Coates J D, Lonergan D J, Philips E J, Jenter H, Lovley D R
Water Resources Division, U. S. Geological Survey, 430 National Center, Reston, VA 22092, USA.
Arch Microbiol. 1995 Dec;164(6):406-13.
Studies on the microorganisms living in hydrocarbon-contaminated sediments in San Diego Bay, California led to the isolation of a novel Fe(III)-reducing microorganism. This organism, designated strain SDBY1, was an obligately anaerobic, non-motile, non-flagellated, gram-negative rod. Strain SDBY1 conserves energy to support growth from the oxidation of acetate, lactate, succinate, fumarate, laurate, palmitate, or stearate. H2 was also oxidized with the reduction of Fe(III), but growth with H2 as the sole electron donor was not observed. In addition to various forms of soluble and insoluble Fe(III), strain SDBY1 also coupled growth to the reduction of fumarate, Mn(IV), or S0. Air-oxidized minus dithionite-reduced difference spectra exhibited peaks at 552.8, 523.6, and 422.8 nm, indicative of c-type cytochrome(s). Strain SDBY1 shares physiological characteristics with organisms in the genera Geobacter, Pelobacter, and Desulfuromonas. Detailed analysis of the 16S rRNA sequence indicated that strain SDBY1 should be placed in the genus Desulfuromonas. The new species name Desulfuromonas palmitatis is proposed. D. palmitatis is only the second marine organism found (after D. acetoxidans) to oxidize multicarbon organic compounds completely to carbon dioxide with Fe(III) as an electron acceptor and provides the first pure culture model for the oxidation of long-chain fatty acids coupled to Fe(III) reduction.
对加利福尼亚州圣地亚哥湾受碳氢化合物污染沉积物中生活的微生物进行的研究,导致分离出一种新型的铁(III)还原微生物。这种微生物被命名为菌株SDBY1,是一种专性厌氧、不运动、无鞭毛的革兰氏阴性杆菌。菌株SDBY1通过氧化乙酸盐、乳酸盐、琥珀酸盐、富马酸盐、月桂酸盐、棕榈酸盐或硬脂酸盐来保存能量以支持生长。氢气也可被氧化并伴有铁(III)的还原,但未观察到以氢气作为唯一电子供体时的生长情况。除了各种可溶和不溶形式的铁(III)外,菌株SDBY1还能将生长与富马酸盐、锰(IV)或硫的还原相偶联。空气氧化减去连二亚硫酸盐还原差光谱在552.8、523.6和422.8 nm处出现峰值,表明存在c型细胞色素。菌株SDBY1与地杆菌属、泥杆菌属和脱硫单胞菌属中的微生物具有生理特征。对16S rRNA序列的详细分析表明,菌株SDBY1应归入脱硫单胞菌属。提出了新物种名称棕榈酸脱硫单胞菌。棕榈酸脱硫单胞菌是继乙酸氧化脱硫单胞菌之后发现的第二种能以铁(III)作为电子受体将多碳有机化合物完全氧化为二氧化碳的海洋生物,并为与铁(III)还原偶联的长链脂肪酸氧化提供了首个纯培养模型。