Suppr超能文献

酵母细胞中糖转运失活对葡萄酒缓慢发酵和发酵停滞的影响。

Effect of Sugar Transport Inactivation in Saccharomyces cerevisiae on Sluggish and Stuck Enological Fermentations.

机构信息

Laboratoire de Microbiologie et Technologie des Fermentations, Institut des Produits de la Vigne, Institut National de la Recherche Agronomique, 2 place Viala, 34060 Montpellier Cedex, France.

出版信息

Appl Environ Microbiol. 1989 Apr;55(4):953-8. doi: 10.1128/aem.55.4.953-958.1989.

Abstract

Sluggish and stuck (i.e., very delayed or incomplete) fermentations have been often observed in wine making. Some of them appeared to be associated with insufficient levels of yeast nutrients such as assimilable nitrogen. In these conditions, sugar transport catabolite inactivation, which is triggered by the protein synthesis arrest, may account in part for the inhibition of fermentation. Moreover, this mechanism of inhibition may explain the failure of added ammoniacal nitrogen to nitrogen-limited musts to restore or elevate rate of fermentation after the early yeast growth phase.

摘要

在酿酒过程中,经常会观察到发酵迟缓或停滞(即非常延迟或不完全)的现象。其中一些似乎与酵母营养物质(如可同化氮)水平不足有关。在这些条件下,糖运输分解代谢物失活可能部分解释了发酵的抑制。此外,这种抑制机制可能解释了在酵母生长早期后,添加氨态氮对氮限制醪液不能恢复或提高发酵速率的原因。

相似文献

1
Effect of Sugar Transport Inactivation in Saccharomyces cerevisiae on Sluggish and Stuck Enological Fermentations.
Appl Environ Microbiol. 1989 Apr;55(4):953-8. doi: 10.1128/aem.55.4.953-958.1989.
3
Temperature-dependent kinetic model for nitrogen-limited wine fermentations.
Appl Environ Microbiol. 2007 Sep;73(18):5875-84. doi: 10.1128/AEM.00670-07. Epub 2007 Jul 6.
5
Biomass content governs fermentation rate in nitrogen-deficient wine musts.
Appl Environ Microbiol. 2004 Jun;70(6):3392-400. doi: 10.1128/AEM.70.6.3392-3400.2004.
6
Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
Int J Food Microbiol. 2012 Jul 2;157(2):245-50. doi: 10.1016/j.ijfoodmicro.2012.05.012. Epub 2012 May 16.
7
Kinetic model for nitrogen-limited wine fermentations.
Biotechnol Bioeng. 2002 Jan 5;77(1):49-60. doi: 10.1002/bit.10133.
8
Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations.
Int J Food Microbiol. 2006 Apr 25;108(2):239-45. doi: 10.1016/j.ijfoodmicro.2005.11.012. Epub 2006 Feb 17.

引用本文的文献

1
Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO production monitoring.
Bioprocess Biosyst Eng. 2023 Aug;46(8):1209-1220. doi: 10.1007/s00449-023-02892-3. Epub 2023 Jun 20.
2
surface display of endolysin LysKB317 for control of bacterial contamination in corn ethanol fermentations.
Front Bioeng Biotechnol. 2023 Apr 6;11:1162720. doi: 10.3389/fbioe.2023.1162720. eCollection 2023.
3
The Timing of Nitrogen Addition Impacts Yeast Genes Expression and the Production of Aroma Compounds During Wine Fermentation.
Front Microbiol. 2022 Feb 22;13:829786. doi: 10.3389/fmicb.2022.829786. eCollection 2022.
4
7
Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation.
Front Microbiol. 2018 Feb 22;9:288. doi: 10.3389/fmicb.2018.00288. eCollection 2018.
10
Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.
AMB Express. 2014 May 10;4:39. doi: 10.1186/s13568-014-0039-6. eCollection 2014.

本文引用的文献

1
Inhibition of alcoholic fermentation of grape must by Fatty acids produced by yeasts and their elimination by yeast ghosts.
Appl Environ Microbiol. 1984 Jun;47(6):1246-9. doi: 10.1128/aem.47.6.1246-1249.1984.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae.
J Bacteriol. 1984 Sep;159(3):1013-7. doi: 10.1128/jb.159.3.1013-1017.1984.
5
Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730-4. doi: 10.1073/pnas.80.6.1730.
6
Biochemical correlates of respiratory deficiency. VII. Glucose repression.
Arch Biochem Biophys. 1966 Sep 26;116(1):224-51. doi: 10.1016/0003-9861(66)90029-4.
8
Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae.
Mol Cell Biochem. 1974 Dec 20;5(3):161-71. doi: 10.1007/BF01731379.
9
The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae.
J Bacteriol. 1987 Apr;169(4):1656-62. doi: 10.1128/jb.169.4.1656-1662.1987.
10
Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae.
J Gen Microbiol. 1986 Feb;132(2):379-85. doi: 10.1099/00221287-132-2-379.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验