Suppr超能文献

从土壤中通过选择性富集分离的微生物产生胱氨酸和胱氨酸的 h(2)s 机制。

Mechanisms of h(2)s production from cysteine and cystine by microorganisms isolated from soil by selective enrichment.

机构信息

Department of Agronomy, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691-6900.

出版信息

Appl Environ Microbiol. 1991 May;57(5):1413-7. doi: 10.1128/aem.57.5.1413-1417.1991.

Abstract

Hydrogen sulfide (H(2)S) is a major component of biogenic gaseous sulfur emissions from terrestrial environments. However, little is known concerning the pathways for H(2)S production from the likely substrates, cysteine and cystine. A mixed microbial culture obtained from cystine-enriched soils was used in assays (50 min, 37 degrees C) with 0.05 M Tris-HCl (pH 8.5), 25 mumol of l-cysteine, 25 mumol of l-cystine, and 0.04 mumol of pyridoxal 5'-phosphate. Sulfide was trapped in a center well containing zinc acetate, while pyruvate was measured by derivatization with 2,4-dinitrophenylhydrazine. Sulfide and total pyruvate production were 17.6 and 17.2 nmol mg of protein min, respectively. Dithiothreitol did not alter reaction stoichiometry or the amount of H(2)S and total pyruvate, whereas N-ethylmaleimide reduced both H(2)S and total pyruvate production equally. The amount of H(2)S produced was reduced by 96% when only l-cystine was included as the substrate in the assay and by 15% with the addition of propargylglycine, a specific suicide inhibitor of cystathionine gamma-lyase. These data indicate that the substrate for the reaction was cysteine and the enzyme responsible for H(2)S and pyruvate production was cysteine desulfhydrase (EC 4.4.1.1). The enzyme had a K(m) of 1.32 mM and was inactivated by temperatures greater than 60 degrees C. Because cysteine is present in soil and cysteine desulfhydrase is an inducible enzyme, the potential for H(2)S production by this mechanism exists in terrestrial environments. The relative importance of this mechanism compared with other processes involved in H(2)S production from soil is unknown.

摘要

硫化氢 (H(2)S) 是陆地环境中生物成因气态硫排放的主要成分。然而,对于可能的底物半胱氨酸和胱氨酸产生 H(2)S 的途径知之甚少。从富含胱氨酸的土壤中获得的混合微生物培养物用于在含有 0.05 M Tris-HCl(pH 8.5)、25 mumol 的 l-半胱氨酸、25 mumol 的 l-胱氨酸和 0.04 mumol 的吡哆醛 5'-磷酸的测定中(50 分钟,37 摄氏度)。硫化物被捕获在含有乙酸锌的中心井中,而丙酮酸则通过与 2,4-二硝基苯肼衍生化来测量。硫化物和总丙酮酸的产生量分别为 17.6 和 17.2 nmol mg 的蛋白质 min。二硫苏糖醇不会改变反应的化学计量或 H(2)S 和总丙酮酸的量,而 N-乙基马来酰亚胺则平等地减少 H(2)S 和总丙酮酸的产生。当仅将 l-胱氨酸作为测定中的底物包含时,H(2)S 的产生量减少了 96%,而添加丙炔甘氨酸(半胱氨酸γ-裂合酶的特异性自杀抑制剂)时减少了 15%。这些数据表明反应的底物是半胱氨酸,负责 H(2)S 和丙酮酸产生的酶是半胱氨酸脱巯基酶(EC 4.4.1.1)。该酶的 K(m) 为 1.32 mM,并且在温度高于 60 摄氏度时失活。由于半胱氨酸存在于土壤中,并且半胱氨酸脱巯基酶是一种诱导酶,因此这种机制在陆地环境中存在产生 H(2)S 的潜力。与土壤中产生 H(2)S 相关的其他过程相比,这种机制的相对重要性尚不清楚。

相似文献

1
Mechanisms of h(2)s production from cysteine and cystine by microorganisms isolated from soil by selective enrichment.
Appl Environ Microbiol. 1991 May;57(5):1413-7. doi: 10.1128/aem.57.5.1413-1417.1991.
3
Characterization of L-cysteine desulfhydrase from Prevotella intermedia.
Oral Microbiol Immunol. 2009 Dec;24(6):485-92. doi: 10.1111/j.1399-302X.2009.00546.x.
4
lcd from Streptococcus anginosus encodes a C-S lyase with alpha,beta-elimination activity that degrades L-cysteine.
Microbiology (Reading). 2002 Dec;148(Pt 12):3961-3970. doi: 10.1099/00221287-148-12-3961.
5
-3-Carboxypropyl-l-cysteine specifically inhibits cystathionine γ-lyase-dependent hydrogen sulfide synthesis.
J Biol Chem. 2019 Jul 12;294(28):11011-11022. doi: 10.1074/jbc.RA119.009047. Epub 2019 Jun 3.
7
Purification and Characterization of Cystine Lyase a from Broccoli Inflorescence.
Biosci Biotechnol Biochem. 1997 Jan;61(11):1890-5. doi: 10.1271/bbb.61.1890.
10
Sulfhemoglobin formation in human erythrocytes by cystalysin, an L-cysteine desulfhydrase from Treponema denticola.
Oral Microbiol Immunol. 1999 Jun;14(3):153-64. doi: 10.1034/j.1399-302x.1999.140303.x.

引用本文的文献

2
Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis.
Angew Chem Int Ed Engl. 2021 Mar 22;60(13):7140-7147. doi: 10.1002/anie.202015570. Epub 2021 Feb 17.
4
Cupriavidus necator H16 Uses Flavocytochrome Sulfide Dehydrogenase To Oxidize Self-Produced and Added Sulfide.
Appl Environ Microbiol. 2017 Oct 31;83(22). doi: 10.1128/AEM.01610-17. Print 2017 Nov 15.
5
Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions.
ISME J. 2017 Dec;11(12):2754-2766. doi: 10.1038/ismej.2017.125. Epub 2017 Aug 4.
6
Volatile mediated interactions between bacteria and fungi in the soil.
J Chem Ecol. 2012 Jun;38(6):665-703. doi: 10.1007/s10886-012-0135-5. Epub 2012 Jun 1.
7
The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide.
Genetics. 2011 Oct;189(2):521-32. doi: 10.1534/genetics.111.129841. Epub 2011 Aug 11.
8
Cysteine-activated hydrogen sulfide (H2S) donors.
J Am Chem Soc. 2011 Jan 12;133(1):15-7. doi: 10.1021/ja1085723. Epub 2010 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验