Suppr超能文献

温度对森林土壤和纯培养甲烷氧化菌甲基单胞菌甲烷消耗的影响。

Effects of Temperature on Methane Consumption in a Forest Soil and in Pure Cultures of the Methanotroph Methylomonas rubra.

机构信息

Darling Marine Center, University of Maine, Walpole, Maine 04573, and Department of Microbial Ecology, University of Arhus, DK-8000 Arhus C, Denmark.

出版信息

Appl Environ Microbiol. 1992 Sep;58(9):2758-63. doi: 10.1128/aem.58.9.2758-2763.1992.

Abstract

Methane oxidation in soil cores from a mixed hardwood-coniferous forest varied relatively little as a function of incubation temperatures from -1 to 30 degrees C. The increase in oxidation rate was proportional to T (in kelvins). This relationship was consistent with limitation of methane transport through a soil gas phase to a subsurface zone of consumption by diffusion. The Q(10) for CO(2) production, 3.4, was substantially higher than that for methane oxidation, 1.1, and indicated that the response of soil respiration to temperature was limited by enzymatic processes and not diffusion of either organic substrates or molecular oxygen. When grown under conditions of phase-transfer limitation, cultures of Methylomonas rubra showed a minimal response to temperature changes between 19 and 38 degrees C, as indicated by methane oxidation rates; in the absence of phase-transfer limitations, M. rubra oxidized methane at rates strongly dependent on temperature.

摘要

土壤核心中的甲烷氧化作用在混合硬木-针叶林的培养温度从-1 摄氏度到 30 摄氏度之间变化不大。氧化速率的增加与 T(开尔文)成正比。这种关系与通过土壤气相向消耗的地下区域扩散限制甲烷传输一致。CO2 生成的 Q(10)为 3.4,明显高于甲烷氧化的 Q(10)为 1.1,这表明土壤呼吸对温度的响应受到酶促过程的限制,而不是有机底物或分子氧的扩散限制。当在相转移限制条件下生长时,红甲基单胞菌的培养物显示出对 19 至 38 摄氏度之间温度变化的最小响应,这表明甲烷氧化速率;在没有相转移限制的情况下,红甲基单胞菌以强烈依赖于温度的速率氧化甲烷。

相似文献

1
Effects of Temperature on Methane Consumption in a Forest Soil and in Pure Cultures of the Methanotroph Methylomonas rubra.
Appl Environ Microbiol. 1992 Sep;58(9):2758-63. doi: 10.1128/aem.58.9.2758-2763.1992.
2
Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen.
Appl Environ Microbiol. 1993 Feb;59(2):485-90. doi: 10.1128/aem.59.2.485-490.1993.
3
Effect of temperature on methane oxidation and community composition in landfill cover soil.
J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1283-1295. doi: 10.1007/s10295-019-02217-y. Epub 2019 Jul 17.
4
Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine.
Appl Microbiol Biotechnol. 2016 Dec;100(24):10331-10341. doi: 10.1007/s00253-016-7738-7. Epub 2016 Jul 29.
5
Limits and dynamics of methane oxidation in landfill cover soils.
Waste Manag. 2011 May;31(5):823-32. doi: 10.1016/j.wasman.2009.12.018. Epub 2010 Jan 21.
6
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
10
Rapid methane oxidation in a landfill cover soil.
Appl Environ Microbiol. 1990 Nov;56(11):3405-11. doi: 10.1128/aem.56.11.3405-3411.1990.

引用本文的文献

1
Thermal acclimation of methanotrophs from the genus Methylobacter.
ISME J. 2023 Apr;17(4):502-513. doi: 10.1038/s41396-023-01363-7. Epub 2023 Jan 18.
5
Effect of temperature on methane oxidation and community composition in landfill cover soil.
J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1283-1295. doi: 10.1007/s10295-019-02217-y. Epub 2019 Jul 17.
6
Near-zero methane emission from an abandoned boreal peatland pasture based on eddy covariance measurements.
PLoS One. 2017 Dec 18;12(12):e0189692. doi: 10.1371/journal.pone.0189692. eCollection 2017.
7
Warmer and drier conditions and nitrogen fertilizer application altered methanotroph abundance and methane emissions in a vegetable soil.
Environ Sci Pollut Res Int. 2017 Jan;24(3):2770-2780. doi: 10.1007/s11356-016-8027-9. Epub 2016 Nov 12.
8
Methane dosage to soil and its effect on plant growth.
World J Microbiol Biotechnol. 1995 Sep;11(5):529-35. doi: 10.1007/BF00286368.
9
Responses of methanotrophic activity in soils and cultures to water stress.
Appl Environ Microbiol. 1996 Sep;62(9):3203-9. doi: 10.1128/aem.62.9.3203-3209.1996.
10
Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
Appl Environ Microbiol. 1998 Mar;64(3):1091-8. doi: 10.1128/AEM.64.3.1091-1098.1998.

本文引用的文献

1
THE OCCURRENCE AND CHARACTERISTICS OF METHANE-OXIDIZING BACTERIA IN MARINE SEDIMENTS.
J Bacteriol. 1949 Oct;58(4):463-73. doi: 10.1128/jb.58.4.463-473.1949.
2
Rapid methane oxidation in a landfill cover soil.
Appl Environ Microbiol. 1990 Nov;56(11):3405-11. doi: 10.1128/aem.56.11.3405-3411.1990.
3
Methane Oxidation by Nitrosococcus oceanus and Nitrosomonas europaea.
Appl Environ Microbiol. 1983 Feb;45(2):401-10. doi: 10.1128/aem.45.2.401-410.1983.
4
Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment.
Appl Environ Microbiol. 1982 Dec;44(6):1374-84. doi: 10.1128/aem.44.6.1374-1384.1982.
5
Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil.
Appl Environ Microbiol. 1981 Aug;42(2):211-5. doi: 10.1128/aem.42.2.211-215.1981.
7
Some cultural and physiological aspects of methane-utilizing bacteria.
Antonie Van Leeuwenhoek. 1975;41(2):121-34. doi: 10.1007/BF02565044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验