Suppr超能文献

瘤胃液、厌氧消化污泥和沉积物的氢消耗动力学。

Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment.

机构信息

Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48824.

出版信息

Appl Environ Microbiol. 1982 Dec;44(6):1374-84. doi: 10.1128/aem.44.6.1374-1384.1982.

Abstract

Michaelis-Menten kinetic parameters for H(2) consumption by three methanogenic habitats were determined from progress curve and initial velocity experiments. The influences of mass transfer resistance, endogenous H(2) production, and growth on apparent parameter estimates were also investigated. Kinetic parameters could not be determined for undiluted rumen fluid and some digestor sludge from gas-phase measurements of H(2), since mass transfer of H(2) across the gas-liquid interface was rate limiting. However, accurate values were obtained once the samples were diluted. H(2) consumption by digestor sludge with a long retention time and by hypereutrophic lake sediment was not phase transfer limited. The K(m) values for H(2) uptake by these habitats were similar, with means of 5.8, 6.0, and 7.1 muM for rumen fluid, digestor sludge, and sediment, respectively. V(max) estimates suggested a ratio of activity of approximately 100 (rumen fluid):10 (sludge):1 (sediment); their ranges were as follows: rumen fluid, 14 to 28 mM h; Holt sludge, 0.7 to 4.3 mM h; and Wintergreen sediment, 0.13 to 0.49 mM h. The principles of phase transfer limitation, studied here for H(2), are the same for all gaseous substrates and products. The limitations and errors associated with gas phase determination of kinetic parameters were evaluated with a mathematical model that combined mass transport and Michaelis-Menten kinetics. Three criteria are described which can be used to evaluate the possibility that a phase transfer limitation exists. If it does not exist, (i) substrate consumption curves are Michaelis-Menten and not first order, (ii) the K(m) is independent of initial substrate concentration, and (iii) the K(m) is independent of biomass (V(max)) and remains constant with dilution of sample. Errors in the Michaelis-Menten kinetic parameters are caused by endogenously produced H(2), but they were <15% for rumen fluid and 10% for lake sediment and digestor sludge. Increases in V(max) during the course of progress curve experiments were not great enough to produce systematic deviations from Michaelis-Menten kinetics.

摘要

米氏动力学参数为 H(2)的消耗由三个产甲烷栖息地从进展曲线和初始速度实验确定。传质阻力的影响,内源性 H(2)的生产,以及对表观参数估计的影响也进行了研究。动力学参数不能为未经稀释的瘤胃液和一些消化器污泥从气相测量的 H(2),因为 H(2)的传质通过气-液界面是限速的。然而,一旦样品被稀释,就可以得到准确的值。消化器污泥和超营养湖泊沉积物的 H(2)消耗不受相转移限制。这些栖息地的 H(2)摄取 K(m)值相似,平均值分别为 5.8、6.0 和 7.1 μM 用于瘤胃液、消化器污泥和沉积物。V(max)的估计表明,活性的比值约为 100(瘤胃液):10(污泥):1(沉积物);它们的范围如下:瘤胃液,14 至 28 mM h;Holt 污泥,0.7 至 4.3 mM h;和 Wintergreen 沉积物,0.13 至 0.49 mM h。在这里研究的 H(2)的相转移限制的原理是相同的,所有气态底物和产物。与气相动力学参数的测定相关的限制和误差通过一个数学模型进行了评估,该模型将质量传输和米氏动力学结合在一起。描述了三个标准,可以用来评估是否存在相转移限制。如果不存在,(i)底物消耗曲线是米氏酶动力学的,而不是一级的,(ii)K(m)与初始底物浓度无关,以及(iii)K(m)与生物质(V(max))无关,并且随着样品的稀释而保持不变。米氏酶动力学参数中的误差是由内源性产生的 H(2)引起的,但对于瘤胃液和 10%的湖泊沉积物和消化器污泥来说,误差<15%。在进展曲线实验过程中 V(max)的增加不足以产生与米氏酶动力学的系统偏差。

相似文献

引用本文的文献

4
Biohythane production from organic wastes: present state of art.利用有机废物生产生物氢气:现状
Environ Sci Pollut Res Int. 2016 May;23(10):9391-410. doi: 10.1007/s11356-015-5469-4. Epub 2015 Oct 28.
8
The importance of hydrogen in landfill fermentations.氢气在垃圾填埋场发酵中的重要性。
Appl Environ Microbiol. 1996 May;62(5):1583-8. doi: 10.1128/aem.62.5.1583-1588.1996.

本文引用的文献

7
Kinetics of acetate metabolism during sludge digestion.污泥消化过程中乙酸盐代谢的动力学
Appl Microbiol. 1966 May;14(3):368-71. doi: 10.1128/am.14.3.368-371.1966.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验