Suppr超能文献

甲烷球菌原生质体的自然转化和电穿孔介导转化。

Natural and Electroporation-Mediated Transformation of Methanococcus voltae Protoplasts.

机构信息

Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6.

出版信息

Appl Environ Microbiol. 1994 Mar;60(3):903-7. doi: 10.1128/aem.60.3.903-907.1994.

Abstract

The lack of high-efficiency transformation systems has severely impeded genetic research on methanogenic members of the kingdom Archaeobacteria. By using protoplasts of Methanococcus voltae and an integration vector, Mip1, previously shown to impart puromycin resistance, we obtained natural transformation frequencies that were about 80-fold higher (705 transformants per mug of transforming DNA) than that reported with whole cells. Electroporation-mediated transformation of M. voltae protoplasts with covalently closed circular Mip1 DNA was possible, but at lower frequencies of ca. 177 transformants per mug of vector DNA. However, a 380-fold improvement (3,417 transformants per mug of DNA) over the frequency of natural transformation with whole cells was achieved by electroporation of protoplasts with linearized DNA. This general approach, of using protoplasts, should allow the transformation of other methanogens, especially those that may be gently converted to protoplasts as a result of their tendency to lyse in hypotonic solutions.

摘要

缺乏高效的转化系统严重阻碍了对产甲烷古菌门的遗传研究。通过使用 Methanococcus voltae 的原生质体和先前显示赋予嘌呤霉素抗性的整合载体 Mip1,我们获得了比用完整细胞报道的转化频率高约 80 倍的自然转化频率(每微克转化 DNA 有 705 个转化体)。M. voltae 原生质体的电穿孔介导转化与共价闭合的圆形 Mip1 DNA 是可能的,但频率约为每微克载体 DNA 177 个转化体。然而,通过用线性化 DNA 电穿孔原生质体,与用完整细胞进行自然转化的频率相比,实现了 380 倍的提高(每微克 DNA 有 3,417 个转化体)。这种使用原生质体的一般方法应该允许对其他产甲烷菌进行转化,特别是那些由于在低渗溶液中倾向于裂解而可能被温和转化为原生质体的产甲烷菌。

相似文献

1
Natural and Electroporation-Mediated Transformation of Methanococcus voltae Protoplasts.
Appl Environ Microbiol. 1994 Mar;60(3):903-7. doi: 10.1128/aem.60.3.903-907.1994.
4
Plasmid transformation of Streptococcus lactis protoplasts: optimization and use in molecular cloning.
Appl Environ Microbiol. 1984 Aug;48(2):252-9. doi: 10.1128/aem.48.2.252-259.1984.
5
Insertional mutagenesis of Aspergillus fumigatus.
Mol Gen Genet. 1998 Aug;259(3):327-35. doi: 10.1007/s004380050819.
6
Isolation of a coenzyme M-auxotrophic mutant and transformation by electroporation in Methanococcus voltae.
J Bacteriol. 1991 Jun;173(11):3414-8. doi: 10.1128/jb.173.11.3414-3418.1991.
9
Improvement of transformation and electroduction in avermectin high-producer, Streptomyces avermitilis.
Folia Microbiol (Praha). 2004;49(4):399-405. doi: 10.1007/BF02931600.
10
Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus.
J Microbiol Methods. 2007 Sep;70(3):519-27. doi: 10.1016/j.mimet.2007.06.014. Epub 2007 Jul 3.

引用本文的文献

1
Distinct Patterns of Antibiotic Sensitivities in Ammonia-Oxidising Archaea.
Environ Microbiol. 2025 Mar;27(3):e70063. doi: 10.1111/1462-2920.70063.
2
Teaching old dogs new tricks: genetic engineering methanogens.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0224723. doi: 10.1128/aem.02247-23. Epub 2024 Jun 10.
3
Model Organisms To Study Methanogenesis, a Uniquely Archaeal Metabolism.
J Bacteriol. 2023 Aug 24;205(8):e0011523. doi: 10.1128/jb.00115-23. Epub 2023 Jul 17.
4
Random transposon mutagenesis identifies genes essential for transformation in Methanococcus maripaludis.
Mol Genet Genomics. 2023 May;298(3):537-548. doi: 10.1007/s00438-023-01994-7. Epub 2023 Feb 24.
5
Type IV-Like Pili Facilitate Transformation in Naturally Competent Archaea.
J Bacteriol. 2020 Oct 8;202(21). doi: 10.1128/JB.00355-20.
6
Gene transfer to plants by electroporation: methods and applications.
Mol Biol Rep. 2020 Apr;47(4):3195-3210. doi: 10.1007/s11033-020-05343-4. Epub 2020 Apr 2.
7
Integration of large heterologous DNA fragments into the genome of Thermococcus kodakarensis.
Extremophiles. 2020 May;24(3):339-353. doi: 10.1007/s00792-020-01159-z. Epub 2020 Feb 28.
8
Mechanisms of gene flow in archaea.
Nat Rev Microbiol. 2017 Aug;15(8):492-501. doi: 10.1038/nrmicro.2017.41. Epub 2017 May 15.
9
The archaellum: how Archaea swim.
Front Microbiol. 2015 Jan 27;6:23. doi: 10.3389/fmicb.2015.00023. eCollection 2015.
10
Overview of the genetic tools in the Archaea.
Front Microbiol. 2012 Oct 2;3:337. doi: 10.3389/fmicb.2012.00337. eCollection 2012.

本文引用的文献

1
Formation and Regeneration of Methanococcus voltae Protoplasts.
Appl Environ Microbiol. 1993 Jan;59(1):27-33. doi: 10.1128/aem.59.1.27-33.1993.
2
Growth and plating efficiency of methanococci on agar media.
Appl Environ Microbiol. 1983 Jul;46(1):220-6. doi: 10.1128/aem.46.1.220-226.1983.
3
Genetic studies with bacterial protoplasts.
Annu Rev Microbiol. 1981;35:237-72. doi: 10.1146/annurev.mi.35.100181.001321.
4
Ultrastructure and biochemistry of the cell wall of Methanococcus voltae.
J Bacteriol. 1987 Mar;169(3):1298-306. doi: 10.1128/jb.169.3.1298-1306.1987.
5
Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg.
J Bacteriol. 1988 Feb;170(2):653-6. doi: 10.1128/jb.170.2.653-656.1988.
6
Strategies for the development of bacterial transformation systems.
Biochimie. 1988 Apr;70(4):503-17. doi: 10.1016/0300-9084(88)90086-7.
8
Methanogens and the diversity of archaebacteria.
Microbiol Rev. 1987 Mar;51(1):135-77. doi: 10.1128/mr.51.1.135-177.1987.
9
Genetic transformation in the methanogen Methanococcus voltae PS.
J Bacteriol. 1987 Jun;169(6):2730-8. doi: 10.1128/jb.169.6.2730-2738.1987.
10
Ultrastructure and biochemistry of Methanococcus voltae.
Crit Rev Microbiol. 1989;17(1):53-87. doi: 10.3109/10408418909105722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验