利用硫酸盐还原菌从元素硫中厌氧生产硫酸盐的新工艺。

Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria.

机构信息

Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092.

出版信息

Appl Environ Microbiol. 1994 Jul;60(7):2394-9. doi: 10.1128/aem.60.7.2394-2399.1994.

Abstract

Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H(2) or organic electron donors oxidized S to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum, Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S + 3 MnO(2) + 4H-->SO(4) + 3Mn(II) + 2H(2)O. None of the organisms evaluated could be grown with S as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S as follows: 4S + 4H(2)O-->SO(4) + 3HS + 5 H. Growth of Desulfobulbus propionicus with S as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S.

摘要

硫酸盐还原菌及其相关微生物先前被发现可利用 H2 或有机电子供体还原 Fe(III),而当提供 Mn(IV) 作为电子受体时,它们会将 S 氧化成硫酸盐。在洗涤细胞悬浮液中催化此反应的微生物包括脱硫弧菌、巴氏脱硫微菌、自养脱硫杆菌、乙酸氧化脱硫菌和地杆菌属。这些微生物用 Fe(III) 作为潜在电子受体或在没有电子受体的情况下,几乎不能或不能从 S 中产生硫酸盐。在对脱硫弧菌的详细研究中,硫酸盐和 Mn(II)生成的化学计量学与反应 S + 3 MnO2 + 4H ⁇ ⁇ ⁇ SO4 + 3Mn(II) + 2H2O 一致。在所评估的微生物中,没有一种可以仅用 S 作为电子供体和 Mn(IV) 作为电子受体进行生长。与其他评估的硫酸盐还原菌不同,丙酸脱硫杆菌可以在没有电子受体和 Fe(III)氧化物的情况下从 S 中产生硫酸盐,并刺激硫酸盐的生成。在没有 Mn(IV) 或 Fe(III)的情况下,也会积累硫化物。硫酸盐和硫化物生成的化学计量学表明,丙酸脱硫杆菌会将 S 歧化,如下所示:4S + 4H2O ⁇ ⁇ ⁇ SO4 + 3HS + 5 H。丙酸脱硫杆菌以 S 作为电子供体,以 Fe(III) 作为硫化物汇和/或电子受体进行生长非常缓慢。此处描述的与 Mn(IV) 还原偶联的 S 氧化为先前在缺氧海洋沉积物中观察到的 Mn(IV) 依赖型硫酸盐生成提供了一个潜在的解释。丙酸脱硫杆菌是第一个已知可以歧化 S 的纯培养物的例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索