Suppr超能文献

利用硫酸盐还原菌从元素硫中厌氧生产硫酸盐的新工艺。

Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria.

机构信息

Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092.

出版信息

Appl Environ Microbiol. 1994 Jul;60(7):2394-9. doi: 10.1128/aem.60.7.2394-2399.1994.

Abstract

Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H(2) or organic electron donors oxidized S to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum, Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S + 3 MnO(2) + 4H-->SO(4) + 3Mn(II) + 2H(2)O. None of the organisms evaluated could be grown with S as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S as follows: 4S + 4H(2)O-->SO(4) + 3HS + 5 H. Growth of Desulfobulbus propionicus with S as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S.

摘要

硫酸盐还原菌及其相关微生物先前被发现可利用 H2 或有机电子供体还原 Fe(III),而当提供 Mn(IV) 作为电子受体时,它们会将 S 氧化成硫酸盐。在洗涤细胞悬浮液中催化此反应的微生物包括脱硫弧菌、巴氏脱硫微菌、自养脱硫杆菌、乙酸氧化脱硫菌和地杆菌属。这些微生物用 Fe(III) 作为潜在电子受体或在没有电子受体的情况下,几乎不能或不能从 S 中产生硫酸盐。在对脱硫弧菌的详细研究中,硫酸盐和 Mn(II)生成的化学计量学与反应 S + 3 MnO2 + 4H ⁇ ⁇ ⁇ SO4 + 3Mn(II) + 2H2O 一致。在所评估的微生物中,没有一种可以仅用 S 作为电子供体和 Mn(IV) 作为电子受体进行生长。与其他评估的硫酸盐还原菌不同,丙酸脱硫杆菌可以在没有电子受体和 Fe(III)氧化物的情况下从 S 中产生硫酸盐,并刺激硫酸盐的生成。在没有 Mn(IV) 或 Fe(III)的情况下,也会积累硫化物。硫酸盐和硫化物生成的化学计量学表明,丙酸脱硫杆菌会将 S 歧化,如下所示:4S + 4H2O ⁇ ⁇ ⁇ SO4 + 3HS + 5 H。丙酸脱硫杆菌以 S 作为电子供体,以 Fe(III) 作为硫化物汇和/或电子受体进行生长非常缓慢。此处描述的与 Mn(IV) 还原偶联的 S 氧化为先前在缺氧海洋沉积物中观察到的 Mn(IV) 依赖型硫酸盐生成提供了一个潜在的解释。丙酸脱硫杆菌是第一个已知可以歧化 S 的纯培养物的例子。

相似文献

1
Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria.
Appl Environ Microbiol. 1994 Jul;60(7):2394-9. doi: 10.1128/aem.60.7.2394-2399.1994.
2
Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans.
Appl Environ Microbiol. 1993 Mar;59(3):734-42. doi: 10.1128/aem.59.3.734-742.1993.
3
Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1.
Microbiology (Reading). 2014 Jan;160(Pt 1):123-129. doi: 10.1099/mic.0.069930-0. Epub 2013 Oct 29.
4
Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.
Appl Environ Microbiol. 2000 Jun;66(6):2430-7. doi: 10.1128/AEM.66.6.2430-2437.2000.
5
Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.
Appl Environ Microbiol. 1989 Mar;55(3):700-6. doi: 10.1128/aem.55.3.700-706.1989.
6
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
8
Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese.
Appl Environ Microbiol. 1993 Jan;59(1):101-8. doi: 10.1128/aem.59.1.101-108.1993.
9
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
10
A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire.
Appl Environ Microbiol. 1992 Oct;58(10):3211-6. doi: 10.1128/aem.58.10.3211-3216.1992.

引用本文的文献

3
Mechanical property degradation of X80 pipeline steel due to microbiologically influenced corrosion caused by .
Front Bioeng Biotechnol. 2022 Nov 7;10:1028462. doi: 10.3389/fbioe.2022.1028462. eCollection 2022.
5
Using Oxidative Electrodes to Enrich Novel Members in the Family from Intertidal Sediments.
Microorganisms. 2021 Nov 11;9(11):2329. doi: 10.3390/microorganisms9112329.
7
Expanded Genomic Sampling Refines Current Understanding of the Distribution and Evolution of Sulfur Metabolisms in the .
Front Microbiol. 2021 May 19;12:666052. doi: 10.3389/fmicb.2021.666052. eCollection 2021.
8
Multifaceted aspects of charge transfer.
Phys Chem Chem Phys. 2020 Oct 14;22(38):21583-21629. doi: 10.1039/d0cp01556c. Epub 2020 Aug 12.
9
Substrate recognition and ATPase activity of the cysteine/cystine ABC transporter YecSC-FliY.
J Biol Chem. 2020 Apr 17;295(16):5245-5256. doi: 10.1074/jbc.RA119.012063. Epub 2020 Mar 6.

本文引用的文献

1
A thiosulfate shunt in the sulfur cycle of marine sediments.
Science. 1990 Jul 13;249(4965):152-4. doi: 10.1126/science.249.4965.152.
2
Reduction of Chromate by Desulfovibrio vulgaris and Its c(3) Cytochrome.
Appl Environ Microbiol. 1994 Feb;60(2):726-8. doi: 10.1128/aem.60.2.726-728.1994.
3
Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans.
Appl Environ Microbiol. 1993 Mar;59(3):734-42. doi: 10.1128/aem.59.3.734-742.1993.
4
Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese.
Appl Environ Microbiol. 1993 Jan;59(1):101-8. doi: 10.1128/aem.59.1.101-108.1993.
5
Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (kattegat, denmark).
Appl Environ Microbiol. 1991 Mar;57(3):847-56. doi: 10.1128/aem.57.3.847-856.1991.
6
Role of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium Pyrococcus furiosus.
Appl Environ Microbiol. 1990 May;56(5):1255-62. doi: 10.1128/aem.56.5.1255-1262.1990.
7
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
8
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
10
Reduction of uranium by Desulfovibrio desulfuricans.
Appl Environ Microbiol. 1992 Mar;58(3):850-6. doi: 10.1128/aem.58.3.850-856.1992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验