Suppr超能文献

嗜热纤维素分解真菌的研究。

Studies on thermophilic cellulolytic fungi.

作者信息

Romanelli R A, Houston C W, Barnett S M

机构信息

Department of Chemical Engineering and Department of Microbiology and Biophysics, University of Rhode Island, Kingston, Rhode Island 02881.

出版信息

Appl Microbiol. 1975 Aug;30(2):276-81. doi: 10.1128/am.30.2.276-281.1975.

Abstract

Three thermophilic cellulolytic fungi, Chaetomium thermophile var. coprophile, Sporotrichum thermophile, and Thermoascus aurantiacus were studied to determine the conditions for a high rate of cellulose degradation. The range of temperature over which good growth occurred was determined first in a temperature gradient incubator; the optimum temperature was then established in shake flask cultures. T. aurantiacus had the highest optimum growth temperature range (46 to 51 C), whereas S. thermophile had the broadest range over which good growth occurred (36 to 43 C). Optimum temperatures for the three organisms, T. aurantiacus, S. Thermophile, and C. thermophile were 48, 40, and 40 C, respectively. It was found that the addition of an organic carbon and nitrogen source to a cellulose mineral solution medium markedly increased the rate of cellulose degradation. The surfactant, Tween 80, which has been reported to be of value in the production and recovery of the enzyme, cellulase, was shown to be detrimental to the degradation of cellulose in culture. In the medium used, S. thermophile gave the highest rate of substrate utilization; 56% of the cellulose was hydrolyzed in 72 h. The average degree of polymerization of cellulose decreased from 745 to 575.

摘要

研究了三种嗜热纤维素分解真菌,嗜热毛壳菌粪生变种、嗜热侧孢霉和橙色嗜热子囊菌,以确定纤维素高速降解的条件。首先在温度梯度培养箱中确定良好生长的温度范围;然后在摇瓶培养中确定最适温度。橙色嗜热子囊菌具有最高的最适生长温度范围(46至51℃),而嗜热侧孢霉具有良好生长的最宽温度范围(36至43℃)。橙色嗜热子囊菌、嗜热侧孢霉和嗜热毛壳菌这三种微生物的最适温度分别为48℃、40℃和40℃。发现向纤维素矿物溶液培养基中添加有机碳源和氮源可显著提高纤维素降解速率。据报道,表面活性剂吐温80在纤维素酶的生产和回收中具有价值,但它对培养物中纤维素的降解有不利影响。在所使用的培养基中,嗜热侧孢霉的底物利用率最高;72小时内56%的纤维素被水解。纤维素的平均聚合度从745降至575。

相似文献

1
Studies on thermophilic cellulolytic fungi.
Appl Microbiol. 1975 Aug;30(2):276-81. doi: 10.1128/am.30.2.276-281.1975.
2
Comparative temperature-stability properties of malate dehydrogenases from some thermophilic fungi.
Int J Pept Protein Res. 1979 Aug;14(2):99-106. doi: 10.1111/j.1399-3011.1979.tb01732.x.
3
Factors influencing the production of cellulases by Sporotrichum thermophile.
Appl Environ Microbiol. 1976 Jun;31(6):819-25. doi: 10.1128/aem.31.6.819-825.1976.
5
Sporotrichum thermophile Growth, Cellulose Degradation, and Cellulase Activity.
Appl Environ Microbiol. 1987 Sep;53(9):2175-82. doi: 10.1128/aem.53.9.2175-2182.1987.
6
Purification and characterization of two cellobiohydrolases from Chaetomium thermophile var. coprophile.
Biochim Biophys Acta. 1989 Dec 8;993(2-3):266-74. doi: 10.1016/0304-4165(89)90175-x.
8
Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation.
Appl Biochem Biotechnol. 2004 Jul-Sep;118(1-3):205-14. doi: 10.1385/abab:118:1-3:205.
9
Separation and Some Properties of Two Intracellular beta-Glucosidases of Sporotrichum (Chrysosporium) thermophile.
Appl Environ Microbiol. 1981 Apr;41(4):924-31. doi: 10.1128/aem.41.4.924-931.1981.

引用本文的文献

2
CAZymes from the thermophilic fungus Thermoascus aurantiacus are induced by C5 and C6 sugars.
Biotechnol Biofuels. 2021 Aug 12;14(1):169. doi: 10.1186/s13068-021-02018-5.
3
Fungal Genomes and Insights into the Evolution of the Kingdom.
Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0055-2016.
4
Cellulolytic enzymes of a thermotolerantAspergillus terreus strain and their action on cellulosic substrates.
World J Microbiol Biotechnol. 1992 Jan;8(1):45-9. doi: 10.1007/BF01200683.
5
Purification and characterization of extracellular β-glucosidase from Myceliophthora thermophila.
World J Microbiol Biotechnol. 1991 Nov;7(6):613-8. doi: 10.1007/BF00452843.
6
Cellulolytic potential of thermophilic species from four fungal orders.
AMB Express. 2013 Aug 19;3(1):47. doi: 10.1186/2191-0855-3-47.
7
Sporotrichum thermophile Growth, Cellulose Degradation, and Cellulase Activity.
Appl Environ Microbiol. 1987 Sep;53(9):2175-82. doi: 10.1128/aem.53.9.2175-2182.1987.
8
Thermophilic fungi: their physiology and enzymes.
Microbiol Mol Biol Rev. 2000 Sep;64(3):461-88. doi: 10.1128/MMBR.64.3.461-488.2000.
10
Cellulolytic and physiological properties of Clostridium thermocellum.
Arch Microbiol. 1977 Jul 26;114(1):1-7. doi: 10.1007/BF00429622.

本文引用的文献

1
Extracellular purine beta-ribosidases from fungi.
Can J Microbiol. 1968 Apr;14(4):377-83. doi: 10.1139/m68-060.
2
Semimicro determination of cellulose in biological materials.
Anal Biochem. 1969 Dec;32(3):420-4. doi: 10.1016/s0003-2697(69)80009-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验