Wolfle William T, Johnson Robert E, Minko Irina G, Lloyd R Stephen, Prakash Satya, Prakash Louise
Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA.
Mol Cell Biol. 2006 Jan;26(1):381-6. doi: 10.1128/MCB.26.1.381-386.2006.
The X-ray crystal structure of human DNA polymerase iota (Poliota) has shown that it differs from all known Pols in its dependence upon Hoogsteen base pairing for synthesizing DNA. Hoogsteen base pairing provides an elegant mechanism for synthesizing DNA opposite minor-groove adducts that present a severe block to synthesis by replicative DNA polymerases. Germane to this problem, a variety of DNA adducts form at the N2 minor-groove position of guanine. Previously, we have shown that proficient and error-free replication through the gamma-HOPdG (gamma-hydroxy-1,N2-propano-2'-deoxyguanosine) adduct, which is formed from the reaction of acrolein with the N2 of guanine, is mediated by the sequential action of human Poliota and Polkappa, in which Poliota incorporates the nucleotide opposite the lesion site and Polkappa carries out the subsequent extension reaction. To test the general applicability of these observations to other adducts formed at the N2 position of guanine, here we examine the proficiency of human Poliota and Polkappa to synthesize past stereoisomers of trans-4-hydroxy-2-nonenal-deoxyguanosine (HNE-dG). Even though HNE- and acrolein-modified dGs share common structural features, due to their increased size and other structural differences, HNE adducts are potentially more blocking for replication than gamma-HOPdG. We show here that the sequential action of Poliota and Polkappa promotes efficient and error-free synthesis through the HNE-dG adducts, in which Poliota incorporates the nucleotide opposite the lesion site and Polkappa performs the extension reaction.
人类DNA聚合酶iota(Poliota)的X射线晶体结构表明,它在合成DNA时依赖于Hoogsteen碱基配对,这一点与所有已知的DNA聚合酶都不同。Hoogsteen碱基配对为在小沟加合物对面合成DNA提供了一种巧妙的机制,而这些小沟加合物对复制性DNA聚合酶的合成构成了严重阻碍。与此问题相关的是,多种DNA加合物在鸟嘌呤的N2小沟位置形成。此前,我们已经表明,通过γ-HOPdG(γ-羟基-1,N2-丙基-2'-脱氧鸟苷)加合物进行的高效且无差错复制,该加合物由丙烯醛与鸟嘌呤的N2反应形成,是由人类Poliota和Polkappa的顺序作用介导的,其中Poliota在损伤位点对面掺入核苷酸,而Polkappa进行后续的延伸反应。为了测试这些观察结果对在鸟嘌呤N2位置形成的其他加合物的普遍适用性,我们在此研究人类Poliota和Polkappa合成反式-4-羟基-2-壬烯醛-脱氧鸟苷(HNE-dG)立体异构体的能力。尽管HNE和丙烯醛修饰后的dG具有共同的结构特征,但由于它们尺寸增加以及其他结构差异,HNE加合物对复制的阻碍可能比γ-HOPdG更大。我们在此表明,Poliota和Polkappa的顺序作用促进了通过HNE-dG加合物的高效且无差错合成,其中Poliota在损伤位点对面掺入核苷酸,而Polkappa进行延伸反应。