Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239.
J Biol Chem. 2013 May 17;288(20):14247-14255. doi: 10.1074/jbc.M113.458802. Epub 2013 Mar 30.
Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.
丙烯醛是一种致突变性醛,内源性地由脂质过氧化产生,外源性地由包括烟草制品在内的有机物质燃烧产生。丙烯醛与 DNA 碱基反应形成环外 DNA 加合物,如γ-羟基-1,N(2)-丙酰-2'-脱氧鸟苷(γ-HOPdG)和γ-羟基-1,N(6)-丙酰-2'-脱氧腺苷(γ-HOPdA)。体积庞大的γ-HOPdG 加合物会阻止复制聚合酶的 DNA 合成,但可以被核内的跨损伤合成聚合酶绕过。尽管丙烯醛诱导的加合物可能在线粒体 DNA 中形成并持续存在,但动物细胞的线粒体缺乏专门的跨损伤 DNA 合成聚合酶来耐受这些损伤。因此,了解人类细胞中唯一的线粒体 DNA 聚合酶 pol γ 如何作用于丙烯醛加合物 DNA 非常重要。为了解决这个问题,我们使用单核苷酸掺入和引物延伸分析研究了 pol γ 绕过 minor groove γ-HOPdG 和 major groove γ-HOPdA 加合物的能力。pol γ 催化的γ-HOPdG 绕过效率很低,令人惊讶的是,pol γ 更倾向于在加合物的对面掺入嘌呤核苷酸。pol γ 对与γ-HOPdG 相对的错误掺入嘌呤核苷酸的切除速率也比与 dG 相对的核苷酸低约 2 倍。只有在易错嘌呤核苷酸掺入后,才能从γ-HOPdG 相对的引物末端进行引物延伸。然而,pol γ 优先在γ-HOPdA 加合物的对面掺入 dT,并有效地从正确配对的末端延伸引物,表明γ-HOPdA 可能是非致突变的。总之,我们的数据表明,线粒体 DNA 聚合酶可以绕过丙烯醛诱导的环外 DNA 损伤,但在 minor groove γ-HOPdG 加合物的情况下,是以前所未有的高突变率为代价的。