Mandal Mihirbaran, Yun Heedong, Dudley Gregory B, Lin Songnian, Tan Derek S, Danishefsky Samuel J
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, Box 106, New York, New York 10021, USA.
J Org Chem. 2005 Dec 23;70(26):10619-37. doi: 10.1021/jo051470k.
[reaction: see text] The goal of the total synthesis of guanacastepene A served as a focus to bring together several chemical inquiries. One involved the synthesis of fused 5,7-hydrazulenones (see structure 20). Another issue had to do with the mechanistic intermediates in reductive cyclizations (see 17 to 18 and 19). The total synthesis required a mastery of an intramolecular Knoevenagel condensation of a beta,gamma-unsaturated ketone (see compound 41). Actually, cyclization was best accomplished when the terminal double bond of 41 was first converted to an epoxide. Further issues related to the stereochemistry at C5 and, rather surprisingly, the propensity for beta-face acetoxylation at C13. Crystallographic verification of the assigned beta-stereochemistry at C13 is provided. Finally, a route to optically active material is provided (see compound 20). A key element in this construction was an enantioselective addition of isopropenyl cuprate to 2-methylcyclopentenone (see compound 99).
[反应:见正文] 合成瓜纳卡斯特烯A的全合成目标成为了汇聚多个化学研究问题的焦点。其中一个问题涉及稠合5,7-薁酮的合成(见结构20)。另一个问题与还原环化反应中的机理中间体有关(见17至18和19)。全合成需要掌握β,γ-不饱和酮的分子内克诺文纳格尔缩合反应(见化合物41)。实际上,当41的末端双键首先转化为环氧化物时,环化反应能最好地完成。进一步的问题涉及C5位的立体化学,而且相当令人惊讶的是,C13位β-面乙酰氧基化的倾向。提供了C13位指定β-立体化学的晶体学验证。最后,提供了一条制备光学活性物质的路线(见化合物20)。该合成中的一个关键步骤是异丙基铜酸酯对2-甲基环戊烯酮的对映选择性加成反应(见化合物99)。