Misquitta Alston J, Podeszwa Rafał, Jeziorski Bogumił, Szalewicz Krzysztof
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.
J Chem Phys. 2005 Dec 1;123(21):214103. doi: 10.1063/1.2135288.
Recently, three of us have proposed a method [Phys. Rev. Lett. 91, 33201 (2003)] for an accurate calculation of the dispersion energy utilizing frequency-dependent density susceptibilities of monomers obtained from time-dependent density-functional theory (DFT). In the present paper, we report numerical calculations for the helium, neon, water, and carbon dioxide dimers and show that for a wide range of intermonomer separations, including the van der Waals and short-range repulsion regions, the method provides dispersion energies with accuracies comparable to those that can be achieved using the current most sophisticated wave-function methods. If the dispersion energy is combined with (i) the electrostatic and first-order exchange interaction energies as defined in symmetry-adapted perturbation theory (SAPT) but computed using monomer Kohn-Sham (KS) determinants, and (ii) the induction energy computed using the coupled KS static response theory, (iii) the exchange-induction and exchange-dispersion energies computed using KS orbitals and orbital energies, the resulting method, denoted by SAPT(DFT), produces very accurate total interaction potentials. For the helium dimer, the only system with nearly exact benchmark values, SAPT(DFT) reproduces the interaction energy to within about 2% at the minimum and to a similar accuracy for all other distances ranging from the strongly repulsive to the asymptotic region. For the remaining systems investigated by us, the quality of the SAPT(DFT) interaction energies is so high that these energies may actually be more accurate than the best available results obtained with wave-function techniques. At the same time, SAPT(DFT) is much more computationally efficient than any method previously used for calculating the dispersion and other interaction energy components at this level of accuracy.
最近,我们三人提出了一种方法[《物理评论快报》91, 33201 (2003)],用于利用从含时密度泛函理论(DFT)获得的单体频率相关密度磁化率精确计算色散能。在本文中,我们报告了对氦、氖、水和二氧化碳二聚体的数值计算,并表明在广泛的单体间间距范围内,包括范德华区域和短程排斥区域,该方法提供的色散能精度与目前最复杂的波函数方法所能达到的精度相当。如果将色散能与(i)对称适配微扰理论(SAPT)中定义但使用单体Kohn-Sham(KS)行列式计算的静电和一阶交换相互作用能,以及(ii)使用耦合KS静态响应理论计算的诱导能,(iii)使用KS轨道和轨道能量计算的交换诱导能和交换色散能相结合,由此产生的方法,记为SAPT(DFT),会产生非常精确的总相互作用势。对于氦二聚体这个唯一具有近乎精确基准值的系统,SAPT(DFT)在最小值处将相互作用能重现到约2%以内,并且在从强排斥到渐近区域的所有其他距离上也具有类似的精度。对于我们研究的其余系统,SAPT(DFT)相互作用能的质量非常高,以至于这些能量实际上可能比用波函数技术获得的最佳可用结果更精确。与此同时,SAPT(DFT)在计算效率上比以前用于在这种精度水平下计算色散和其他相互作用能分量的任何方法都要高得多。