Tsuzuki Seiji, Ono Ryota, Inoue Satoru, Matsuoka Satoshi, Hasegawa Tatsuo
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113 8656, Japan.
Commun Chem. 2024 Nov 6;7(1):253. doi: 10.1038/s42004-024-01329-6.
The attraction between π-conjugated planar electron donor and acceptor molecules that form many stable charge-transfer (CT) complexes has been explained by quantum chemical CT interactions, although the fundamental origin remains unclear. Here, we demonstrate the mechanism of CT complex formation by potential energy map analysis for TTF-CA and BTBT-TCNQ, using energy decomposition of intermolecular interaction by symmetry-adapted perturbation theory (SAPT) combined with coupled cluster calculation. We find that the source of attraction between donor and acceptor molecules is ascribed primarily to the dispersion force and also to the electrostatic force. In contrast, the contribution of CT interactions to the attractive forces is minimal. We demonstrate that the highly directional feature of the exchange repulsion force, coupled with the attractive dispersion and electrostatic forces, is crucial in determining the intermolecular arrangements of actual CT crystals. These findings are key for understanding the unique structural and electronic properties of π-conjugated CT complexes.
π共轭平面电子供体和受体分子之间形成许多稳定电荷转移(CT)配合物的吸引力,已通过量子化学CT相互作用进行了解释,尽管其根本来源仍不清楚。在这里,我们通过对TTF-CA和BTBT-TCNQ进行势能图分析,利用对称适配微扰理论(SAPT)结合耦合簇计算的分子间相互作用能量分解,展示了CT配合物的形成机制。我们发现,供体和受体分子之间的吸引力主要归因于色散力,也归因于静电力。相比之下,CT相互作用对吸引力的贡献最小。我们证明,交换排斥力的高度定向特征,与有吸引力的色散力和静电力相结合,对于确定实际CT晶体的分子间排列至关重要。这些发现对于理解π共轭CT配合物独特的结构和电子性质至关重要。