Sekine Yuichi, Yumioka Taro, Yamamoto Tetsuya, Muromoto Ryuta, Imoto Seiyu, Sugiyma Kenji, Oritani Kenji, Shimoda Kazuya, Minoguchi Mayu, Akira Shizuo, Yoshimura Akihiko, Matsuda Tadashi
Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
J Immunol. 2006 Jan 1;176(1):380-9. doi: 10.4049/jimmunol.176.1.380.
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains as well as a YXXQ motif in its C-terminal region. Our previous studies have demonstrated that STAP-2 binds to STAT3 and STAT5, and regulates their signaling pathways. In the present study, STAP-2 was found to positively regulate LPS/TLR4-mediated signals in macrophages. Disruption of STAP-2 resulted in impaired LPS/TLR4-induced cytokine production and NF-kappaB activation. Conversely, overexpression of STAP-2 enhanced these LPS/TLR4-induced biological activities. STAP-2, particularly its Src homology 2-like domain, bound to both MyD88 and IkappaB kinase (IKK)-alphabeta, but not TNFR-associated factor 6 or IL-1R-associated kinase 1, and formed a functional complex composed of MyD88-STAP-2-IKK-alphabeta. These interactions augmented MyD88- and/or IKK-alphabeta-dependent signals, leading to enhancement of the NF-kappaB activity. These results demonstrate that STAP-2 may constitute an alternative LPS/TLR4 pathway for NF-kappaB activation instead of the TNFR-associated factor 6-IL-1R-associated kinase 1 pathway.
信号转导衔接蛋白2(STAP - 2)是一种最近发现的衔接蛋白,其在C末端区域含有普列克底物蛋白和Src同源2样结构域以及YXXQ基序。我们之前的研究表明,STAP - 2与信号转导和转录激活因子3(STAT3)及信号转导和转录激活因子5(STAT5)结合,并调节它们的信号通路。在本研究中,发现STAP - 2在巨噬细胞中正向调节脂多糖(LPS)/Toll样受体4(TLR4)介导的信号。STAP - 2的缺失导致LPS/TLR4诱导的细胞因子产生和核因子κB(NF - κB)激活受损。相反,STAP - 2的过表达增强了这些LPS/TLR4诱导的生物学活性。STAP - 2,尤其是其Src同源2样结构域,与髓样分化因子88(MyD88)和IκB激酶(IKK)αβ结合,但不与肿瘤坏死因子受体相关因子6(TRAF6)或白细胞介素1受体相关激酶1(IRAK1)结合,并形成了由MyD88 - STAP - 2 - IKKαβ组成的功能复合物。这些相互作用增强了MyD88和/或IKKαβ依赖性信号,导致NF - κB活性增强。这些结果表明,STAP - 2可能构成一种替代TRAF6 - IRAK1途径的NF - κB激活的LPS/TLR4途径。