Dosil Raquel, Pardo Xosé M, Fdez-Vidal Xosé R
Department of Electronics and Computer Science, Universidade de Santiago de Compostela, Campus Universitario Sur, s/n, 15782 Santiago de Compostela, Spain.
IEEE Trans Biomed Eng. 2005 Dec;52(12):2115-8. doi: 10.1109/TBME.2005.857635.
In this paper, we present a method for the decomposition of a volumetric image into its most relevant visual patterns, which we define as features associated to local energy maxima of the image. The method involves the clustering of a set of predefined bandpass energy filters according to their ability to segregate the different features in the image, thus generating a set of composite-feature detectors tuned to the specific visual patterns present in the data. Clustering is based on a measure of statistical dependence between pairs of frequency features. We will illustrate the applicability of the method to the initialization of a three-dimensional geodesic active model.
在本文中,我们提出了一种将体图像分解为其最相关视觉模式的方法,我们将这些视觉模式定义为与图像局部能量最大值相关的特征。该方法涉及根据一组预定义的带通能量滤波器在图像中分离不同特征的能力进行聚类,从而生成一组针对数据中存在的特定视觉模式进行调谐的复合特征检测器。聚类基于频率特征对之间的统计依赖性度量。我们将说明该方法在三维测地线活动模型初始化中的适用性。