Suppr超能文献

用于测量微粒尺寸和折射率的反向传播光学捕获系统。

Counter-propagating optical trapping system for size and refractive index measurement of microparticles.

作者信息

Flynn Richard A, Shao Bing, Chachisvilis Mirianas, Ozkan Mihrimah, Esener Sadik C

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Biosens Bioelectron. 2006 Jan 15;21(7):1029-36. doi: 10.1016/j.bios.2005.03.011. Epub 2005 Apr 22.

Abstract

We propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle. The counter-propagating optical trap measurement (COTM) system exploits the capability of optical traps to measure pico-Newton forces for microparticles' refractive index and size characterization. Different from the current best technique for microparticles' refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap technique works with any transparent fluid and enables single particle analysis without the use of biological markers. A ray-optics model is used to explore the physical operation of the COTM system, predict system performance and aid system design. Experiments demonstrate the accuracy of refractive index measurement of Deltan=0.013 and size measurement of 3% of diameter with 2% standard deviation. Present performance is instrumentation limited, and a potential improvement by more than two orders of magnitude can be expected in the future. With further development in parallelism and miniaturization, the system offers advantages for cell manipulation and bioanalysis compatible with lab-on-a-chip systems.

摘要

我们提出并演示了一种基于双光束光阱测量微粒尺寸和折射率的新方法,该方法通过检测前向散射光来获取有关微粒的信息。反向传播光阱测量(COTM)系统利用光阱测量皮牛顿力的能力来表征微粒的折射率和尺寸。与目前测量微粒折射率的最佳技术折射仪不同,折射仪是一种需要改变样品流体成分的体相技术,我们的光阱技术可与任何透明流体配合使用,并且无需使用生物标记物就能进行单颗粒分析。利用光线光学模型来探究COTM系统的物理运行情况、预测系统性能并辅助系统设计。实验证明折射率测量精度为Δn = 0.013,尺寸测量精度为直径的3%,标准偏差为2%。目前的性能受仪器限制,预计未来有望提高两个以上数量级。随着并行性和小型化的进一步发展,该系统在与芯片实验室系统兼容的细胞操作和生物分析方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验