Suppr超能文献

[变应性鼻病:Magic Lite SQ变应原筛查吸入剂与CAP-FEIA SX1——血清中两种变应原特异性筛查试验的比较]

[Allergic rhinopathy: Magic Lite SQ Allergy Screen Inhalant and CAP-FEIA SX1--comparison of two allergen-specific screening tests in serum].

作者信息

Rasp G

机构信息

Klinik und Poliklinik für Hals-Nasen-Ohrenkranke der Ludwig-Maximilians-Universität München.

出版信息

Laryngorhinootologie. 1992 Jun;71(6):298-301. doi: 10.1055/s-2007-997299.

Abstract

Although total IgE determination in the diagnosis of allergic rhinitis has been proposed for screening, specific tests seem to be more efficient. In this study, Magic Lite SQ Allergy Screen Inhalant (ML) and CAP-FEIA Phadiatop (CF) were compared in serum in a group of 101 patients with allergic rhinitis (41 women, 60 men, mean age 31.4 years, range 7-69) and 37 controls (17 women, 20 men, mean age 38.3 years, range 6-68). All patients were suffering from nasal disease. The diagnosis based on case history, skin prick test, total and specific IgE determination and nasal challenge tests. ML was found to have a sensitivity of 96% and a specificity of 83.8% while CF achieved a sensitivity of 94.1% and a specificity of 94.6%. Efficiency was 92.8% for ML and 94.2% for CF. A positive predictive value of 94.2% for ML and of 97.9% for CF was calculated while the negative predictive value was 88.6% for ML and 85.4% for CF. It is concluded, that both ML and CF are suitable allergy screening tests able to give a 100% diagnostic security in combination with further examinations, especially regarding the case history.

摘要

尽管总IgE测定已被提议用于过敏性鼻炎的诊断筛查,但特异性检测似乎更为有效。在本研究中,对101例过敏性鼻炎患者(41名女性,60名男性,平均年龄31.4岁,范围7 - 69岁)和37名对照者(17名女性,20名男性,平均年龄38.3岁,范围6 - 68岁)的血清进行了Magic Lite SQ Allergy Screen Inhalant(ML)和CAP - FEIA Phadiatop(CF)检测比较。所有患者均患有鼻部疾病。诊断基于病史、皮肤点刺试验、总IgE和特异性IgE测定以及鼻激发试验。结果发现,ML的敏感性为96%,特异性为83.8%,而CF的敏感性为94.1%,特异性为94.6%。ML的效率为92.8%,CF的效率为94.2%。计算得出ML的阳性预测值为94.2%,CF的阳性预测值为97.9%,而ML的阴性预测值为88.6%,CF的阴性预测值为85.4%。得出的结论是,ML和CF都是合适的过敏筛查检测方法,与进一步检查(尤其是关于病史)相结合时能够提供100%的诊断安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验