Ekins Sean, Andreyev Sergey, Ryabov Andy, Kirillov Eugene, Rakhmatulin Eugene A, Sorokina Svetlana, Bugrim Andrej, Nikolskaya Tatiana
Computational Biology, GeneGo, Inc., 500 Renaissance Drive, Suite 106, St. Joseph, MI 49085, USA.
Drug Metab Dispos. 2006 Mar;34(3):495-503. doi: 10.1124/dmd.105.008458. Epub 2005 Dec 28.
The challenge of predicting the metabolism or toxicity of a drug in humans has been approached using in vivo animal models, in vitro systems, high throughput genomics and proteomics methods, and, more recently, computational approaches. Understanding the complexity of biological systems requires a broader perspective rather than focusing on just one method in isolation for prediction. Multiple methods may therefore be necessary and combined for a more accurate prediction. In the field of drug metabolism and toxicology, we have seen the growth, in recent years, of computational quantitative structure-activity relationships (QSARs), as well as empirical data from microarrays. In the current study we have further developed a novel computational approach, MetaDrug, that 1) predicts metabolites for molecules based on their chemical structure, 2) predicts the activity of the original compound and its metabolites with various absorption, distribution, metabolism, excretion, and toxicity models, 3) incorporates the predictions with human cell signaling and metabolic pathways and networks, and 4) integrates networks and metabolites, with relevant toxicogenomic or other high throughput data. We have demonstrated the utility of such an approach using recently published data from in vitro metabolism and microarray studies for aprepitant, 2(S)-((3,5-bis(trifluoromethyl)benzyl)-oxy)-3(S)phenyl-4-((3-oxo-1,2,4-triazol-5-yl)methyl)morpholine (L-742694), trovofloxacin, 4-hydroxytamoxifen, and artemisinin and other artemisinin analogs to show the predicted interactions with cytochromes P450, pregnane X receptor, and P-glycoprotein, and the metabolites and the networks of genes that are affected. As a comparison, we used a second computational approach, MetaCore, to generate statistically significant gene networks with the available expression data. These case studies demonstrate the combination of QSARs and systems biology methods.
预测药物在人体中的代谢或毒性这一挑战,已通过体内动物模型、体外系统、高通量基因组学和蛋白质组学方法来应对,最近还采用了计算方法。理解生物系统的复杂性需要更广阔的视角,而不是孤立地专注于一种预测方法。因此,可能需要多种方法并将它们结合起来以进行更准确的预测。在药物代谢和毒理学领域,近年来我们看到了计算定量构效关系(QSARs)以及来自微阵列的经验数据的发展。在当前的研究中,我们进一步开发了一种新颖的计算方法——MetaDrug,该方法能够:1)根据分子的化学结构预测其代谢物;2)使用各种吸收、分布、代谢、排泄和毒性模型预测原始化合物及其代谢物的活性;3)将这些预测与人类细胞信号传导以及代谢途径和网络相结合;4)将网络和代谢物与相关的毒理基因组学或其他高通量数据整合在一起。我们利用最近发表的关于阿瑞匹坦、2(S)-((3,5-双(三氟甲基)苄基)-氧基)-3(S)-苯基-4-((3-氧代-1,2,4-三唑-5-基)甲基)吗啉(L-742694)、曲伐沙星、4-羟基他莫昔芬、青蒿素及其他青蒿素类似物的体外代谢和微阵列研究数据,展示了这种方法的实用性,以表明其与细胞色素P450、孕烷X受体和P-糖蛋白的预测相互作用,以及受影响的代谢物和基因网络。作为比较,我们使用了第二种计算方法——MetaCore,利用可用的表达数据生成具有统计学意义的基因网络。这些案例研究展示了QSARs与系统生物学方法的结合。