Song Weifeng, Chattipakorn Siriporn C, McMahon Lori L
Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
J Neurophysiol. 2006 Apr;95(4):2366-79. doi: 10.1152/jn.00386.2005. Epub 2005 Dec 28.
An inhibitory role for strychnine-sensitive glycine-gated chloride channels (GlyRs) in mature hippocampus is beginning to be appreciated. We have reported previously that CA1 pyramidal cells and GABAergic interneurons recorded in 3- to 4-wk-old rat hippocampal slices express functional GlyRs, dispelling previous misconceptions that GlyR expression ceases in early development. However, the effect of GlyR activation on cell excitability and synaptic circuits in hippocampus has not been fully explored. Using whole cell current-clamp recordings, we show that activation of strychnine-sensitive GlyRs through exogenous glycine application causes a significant decrease in input resistance and prevents somatically generated action potentials in both CA1 pyramidal cells and interneurons. Furthermore, GlyR activation depresses the synaptic network by reducing suprathreshold excitatory postsynaptic potentials (EPSPs) to subthreshold events in both cell types. Blockade of postsynaptic GlyRs with the chloride channel blocker 4, 4'-diisothiocyanatostilbene-2-2'-disulfonic acid (DIDS) or altering the chloride ion driving force in recorded cells attenuates the synaptic depression, strongly indicating that a postsynaptic mechanism is responsible. Increasing the local glycine concentration by blocking reuptake causes a strychnine-sensitive synaptic depression in interneuron recordings, suggesting that alterations in extracellular glycine will impact excitability in hippocampal circuits. Finally, using immunohistochemical methods, we show that glycine and the glycine transporter GlyT2 are co-localized selectively in GABAergic interneurons, indicating that interneurons contain both inhibitory neurotransmitters. Thus we report a novel mechanism whereby activation of postsynaptic GlyRs can function to depress activity in the synaptic network in hippocampus. Moreover, the co-localization of glycine and GABA in hippocampal interneurons, similar to spinal cord, brain stem, and cerebellum, suggests that this property is likely to be a general characteristic of inhibitory interneurons throughout the CNS.
士的宁敏感的甘氨酸门控氯离子通道(GlyRs)在成熟海马体中的抑制作用正逐渐被认识到。我们之前报道过,在3至4周龄大鼠海马体切片中记录到的CA1锥体神经元和GABA能中间神经元表达功能性GlyRs,消除了之前认为GlyR表达在早期发育中就停止的误解。然而,GlyR激活对海马体细胞兴奋性和突触回路的影响尚未得到充分研究。通过全细胞电流钳记录,我们发现通过外源性应用甘氨酸激活士的宁敏感的GlyRs会导致输入电阻显著降低,并阻止CA1锥体神经元和中间神经元体细胞产生动作电位。此外,GlyR激活通过将两种细胞类型中的阈上兴奋性突触后电位(EPSPs)降低为阈下事件来抑制突触网络。用氯离子通道阻滞剂4,4'-二异硫氰基芪-2,2'-二磺酸(DIDS)阻断突触后GlyRs或改变记录细胞中的氯离子驱动力可减弱突触抑制,强烈表明突触后机制起作用。通过阻断再摄取增加局部甘氨酸浓度会导致中间神经元记录中出现士的宁敏感的突触抑制,表明细胞外甘氨酸的改变将影响海马体回路的兴奋性。最后,使用免疫组织化学方法,我们表明甘氨酸和甘氨酸转运体GlyT2选择性地共定位于GABA能中间神经元中,表明中间神经元同时含有两种抑制性神经递质。因此,我们报道了一种新机制,即突触后GlyRs的激活可起到抑制海马体突触网络活动的作用。此外,甘氨酸和GABA在海马体中间神经元中的共定位,类似于脊髓、脑干和小脑,表明这种特性可能是整个中枢神经系统中抑制性中间神经元的一个普遍特征。