Biben Thierry, Kassner Klaus, Misbah Chaouqi
LSP, Dynamique des Fluides Complexes et Morphogénèse, Université Joseph Fourier (CNRS), Grenoble I, B.P. 87, Saint-Martin d'Hères, 38402 Cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041921. doi: 10.1103/PhysRevE.72.041921. Epub 2005 Oct 20.
We extend our recent phase-field [T. Biben and C. Misbah, Phys. Rev. E 67, 031908 (2003)] approach to 3D vesicle dynamics. Unlike the boundary-integral formulations, based on the use of the Oseen tensor in the small Reynolds number limit, this method offers several important flexibilities. First, there is no need to track the membrane position; rather this is automatically encoded in dynamics of the phase field to which we assign a finite width representing the membrane extent. Secondly, this method allows naturally for any topology change, like vesicle budding, for example. Thirdly, any non-Newtonian constitutive law, that is generically nonlinear, can be naturally accounted for, a fact which is precluded by the boundary integral formulation. The phase-field approach raises, however, a complication due to the local membrane incompressibility, which, unlike usual interfacial problems, imposes a nontrivial constraint on the membrane. This problem is solved by introducing dynamics of a tension field. The first purpose of this paper is to show how to write adequately the advected-field model for 3D vesicles. We shall then perform a singular expansion of the phase field equation to show that they reduce, in the limit of a vanishing membrane extent, to the sharp boundary equations. Then, we present some results obtained by the phase-field model. We consider two examples; (i) kinetics towards equilibrium shapes and (ii) tanktreading and tumbling. We find a very good agreement between the two methods. We also discuss briefly how effects, such as the membrane shear elasticity and stretching elasticity, and the relative sliding of monolayers, can be accounted for in the phase-field approach.
我们将近期的相场方法 [T. 比本和 C. 米斯巴,《物理评论 E》67, 031908 (2003)] 扩展到三维囊泡动力学。与基于在小雷诺数极限下使用奥森张量的边界积分公式不同,该方法具有几个重要的灵活性。首先,无需追踪膜的位置;相反,这是自动编码在相场动力学中的,我们为相场分配一个代表膜范围的有限宽度。其次,该方法自然地允许任何拓扑变化,例如囊泡出芽。第三,任何非牛顿本构定律,通常是非线性的,都可以自然地考虑在内,而这一事实在边界积分公式中是被排除的。然而,由于局部膜的不可压缩性,相场方法引发了一个复杂性,这与通常的界面问题不同,它对膜施加了一个非平凡的约束。通过引入张力场的动力学来解决这个问题。本文的首要目的是展示如何恰当地写出三维囊泡的平流场模型。然后,我们将对相场方程进行奇异展开,以表明在膜范围趋于零的极限情况下,它们会简化为尖锐边界方程。接着,我们展示一些由相场模型得到的结果。我们考虑两个例子:(i) 趋向平衡形状的动力学和 (ii) 原地旋转和平动。我们发现这两种方法之间有非常好的一致性。我们还简要讨论了如何在相场方法中考虑诸如膜剪切弹性和拉伸弹性以及单层相对滑动等效应。