Suppr超能文献

UVA photoirradiation of retinyl palmitate--formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation.

作者信息

Xia Qingsu, Yin Jun Jie, Cherng Shu-Hui, Wamer Wayne G, Boudreau Mary, Howard Paul C, Fu Peter P

机构信息

National Center for Toxicological Research, U.S. Food and Drug Administration, Department of Biochemical Toxicology, HFT-110, 3900 NCTR Road, Jefferson, AR 72079, USA.

出版信息

Toxicol Lett. 2006 May 5;163(1):30-43. doi: 10.1016/j.toxlet.2005.09.010. Epub 2005 Dec 27.

Abstract

We have previously reported that photoirradiation of retinyl palmitate (RP) in ethanol with UVA light results in the formation of photodecomposition products, including 5,6-epoxy-RP and anhydroretinol (AR). Photoirradiation in the presence of a lipid, methyl linoleate, induced lipid peroxidation, suggesting that reactive oxygen species (ROS) are formed. In the present study, we employ an electron spin resonance (ESR) spin trap technique to provide direct evidence as to whether or not photoirradiation of RP by UVA light produces ROS. Photoirradiation of RP by UVA in the presence of 2,2,6,6-tetramethylpiperidine (TEMP), a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. Both 5,5-dimethyl N-oxide pyrroline (DMPO) and 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) are specific probes for superoxide. When photoirradiation of RP was conducted in the presence of the DMPO or BMPO, ESR signals for DMPO-*OOH or BMPO-*OOH were obtained. These results unambiguously confirmed the formation of superoxide radical anion. Consistent with a free radical mechanism, there was a near complete and time-dependent photodecomposition of RP and its photodecomposition products. ESR studies on the photoirradiation of 5,6-epoxy-RP and AR indicate that these compounds exhibit similar photosensitizing activities as RP under UVA light.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验