Suppr超能文献

一种用于在大肠杆菌中生物合成植物特异性羟基化黄酮醇的P450类黄酮羟化酶的功能表达。

Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli.

作者信息

Leonard Effendi, Yan Yajun, Koffas Mattheos A G

机构信息

Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, 904 Furnas Hall, NY 14260, USA.

出版信息

Metab Eng. 2006 Mar;8(2):172-81. doi: 10.1016/j.ymben.2005.11.001. Epub 2005 Dec 27.

Abstract

Flavonols are plant polyphenolic compounds that belong to the class of molecules collectively known as flavonoids. Because of their demonstrated health benefits towards a wide array of human pathological conditions, a great interest has emerged for their biosynthesis from well-characterized microbial hosts. We present the functional expression in Escherichia coli of a plant P450 flavonoid 3', 5'-hydroxylase (F3'5'H) as a fusion protein with a P450 reductase. This expression allowed metabolic engineering of E. coli to produce the flavonol kaempferol and the 3', 4' B-ring hydroxylated flavonol quercetin from the p-coumaric acid precursor by simultaneously co-expressing the fusion protein with 4-coumaroyl:CoA-ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3beta-hydroxylase (FHT) and flavonol synthase (FLS). Biosynthesis of the B-ring tri-hydroxylated flavonol myricetin from the engineered strains was accomplished when flavanones rather than phenylpropanoid acids were used as precursor molecules. Cultivation of the recombinant strains in rich medium increased the synthesis of all flavonoids with the exception of myricetin. The present work opens the possibility of the future production of several other hydroxylated flavonoid molecules in E. coli.

摘要

黄酮醇是植物多酚类化合物,属于统称为类黄酮的分子类别。由于它们对多种人类病理状况具有已证实的健康益处,因此人们对从特征明确的微生物宿主中生物合成它们产生了极大的兴趣。我们展示了一种植物P450类黄酮3',5'-羟化酶(F3'5'H)与P450还原酶作为融合蛋白在大肠杆菌中的功能性表达。这种表达通过将融合蛋白与4-香豆酰:辅酶A连接酶(4CL)、查尔酮合酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3β-羟化酶(FHT)和黄酮醇合酶(FLS)同时共表达,使大肠杆菌能够进行代谢工程改造,从对香豆酸前体产生黄酮醇山奈酚和3',4'-B环羟基化黄酮醇槲皮素。当使用黄烷酮而非苯丙氨酸作为前体分子时,工程菌株实现了B环三羟基化黄酮醇杨梅素的生物合成。在丰富培养基中培养重组菌株增加了除杨梅素外所有类黄酮的合成。目前的工作为未来在大肠杆菌中生产其他几种羟基化类黄酮分子开辟了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验