School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
Microb Cell Fact. 2022 May 14;21(1):86. doi: 10.1186/s12934-022-01815-3.
Eriodictyol is a bioactive flavonoid compound that shows potential applications in medicine development and food processing. Microbial synthesis of eriodictyol has been attracting increasing attention due to several benefits. In this study, we employed a GRAS strain Corynebacterium glutamicum as the host to produce eriodictyol directly from tyrosine.
We firstly optimized the biosynthetic module of naringenin, the upstream intermediate for eriodictyol production, through screening of different gene orthologues. Next, to improve the level of the precursor malonyl-CoA necessary for naringenin production, we introduced matB and matC from Rhizobium trifolii into C. glutamicum to convert extracellular malonate to intracellular malonyl-CoA. This combinatorial engineering resulted in around 35-fold increase in naringenin production from tyrosine compared to the initial recombinant C. glutamicum. Subsequently, the hpaBC genes from E. coli encoding 4-hydroxyphenylacetate 3-hydroxylase were expressed in C. glutamicum to synthesize eriodictyol from naringenin. Further optimization of the biotransformation process parameters led to the production of 14.10 mg/L eriodictyol.
The biosynthesis of the ortho-hydroxylated flavonoid eriodictyol in C. glutamicum was achieved for the first time via functional expression of E. coli hpaBC, providing a baseline strain for biosynthesis of other complex flavonoids. Our study demonstrates the potential application of C. glutamicum as a host microbe for the biosynthesis of value-added natural compounds from tyrosine.
圣草酚是一种具有生物活性的类黄酮化合物,在药物开发和食品加工方面具有潜在的应用价值。由于具有多种优势,微生物合成圣草酚越来越受到关注。在本研究中,我们采用安全的谷氨酸棒杆菌作为宿主,直接从酪氨酸生产圣草酚。
我们首先通过筛选不同的基因同源物,优化了圣草酚生产的上游中间体柚皮素的生物合成模块。接下来,为了提高生产柚皮素所需的前体丙二酰辅酶 A 的水平,我们将三叶草根瘤菌的 matB 和 matC 基因引入谷氨酸棒杆菌,将胞外丙二酸盐转化为胞内丙二酰辅酶 A。这种组合工程使酪氨酸生产柚皮素的产量比初始重组谷氨酸棒杆菌提高了约 35 倍。随后,在谷氨酸棒杆菌中表达了大肠杆菌编码 4-羟基苯乙酸 3-羟化酶的 hpaBC 基因,以从柚皮素合成圣草酚。进一步优化生物转化过程参数,可生产 14.10mg/L 的圣草酚。
首次通过大肠杆菌 hpaBC 的功能表达,在谷氨酸棒杆菌中实现了邻位羟化类黄酮圣草酚的生物合成,为其他复杂类黄酮的生物合成提供了基础菌株。我们的研究表明,谷氨酸棒杆菌作为宿主微生物,可从酪氨酸生物合成有价值的天然化合物。