Suppr超能文献

硫醇盐-醌电荷转移复合物及其加合物形式在DsbB从头生成二硫键中的关键作用。

Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB.

作者信息

Inaba Kenji, Takahashi Yoh-hei, Ito Koreaki, Hayashi Shigehiko

机构信息

Institute for Virus Research, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8507, Japan.

出版信息

Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):287-92. doi: 10.1073/pnas.0507570103. Epub 2005 Dec 29.

Abstract

Recent studies have revealed numerous examples in which oxidation and reduction of cysteines in proteins are integrated into specific cascades of biological regulatory systems. In general, these reactions proceed as thiol-disulfide exchange events. However, it is not exactly understood how a disulfide bond is created de novo. DsbB, an Escherichia coli plasma membrane protein, is one of the enzymes that create a new disulfide bond within itself and in DsbA, the direct catalyst of protein disulfide bond formation in the periplasmic space. DsbB is associated with a cofactor, either ubiquinone or menaquinone, as a source of an oxidizing equivalent. The DsbB-bound quinone undergoes transition to a pink (lambdamax, approximately 500 nm, ubiquinone) or violet (lambdamax, approximately 550 nm, menaquinone)-colored state during the course of the DsbB enzymatic reaction. Here we show that not only the thiolate form of Cys-44 previously suggested but also Arg-48 in the alpha-helical arrangement is essential for the quinone transition. Quantum chemical simulations indicate that proper positioning of thiolate anion and ubiquinone in conjunction with positively charged guanidinium moiety of arginine allows the formation of a thiolate-ubiquinone charge transfer complex with absorption peaks at approximately 500 nm as well as a cysteinylquinone covalent adduct. We propose that the charge transfer state leads to the transition state adduct that accepts a nucleophilic attack from another cysteine to generate a disulfide bond de novo. A similar mechanism is conceivable for a class of eukaryotic dithiol oxidases having a FAD cofactor.

摘要

最近的研究揭示了许多实例,其中蛋白质中半胱氨酸的氧化和还原被整合到生物调节系统的特定级联反应中。一般来说,这些反应以硫醇-二硫键交换事件的形式进行。然而,二硫键是如何从头形成的尚不完全清楚。DsbB是一种大肠杆菌质膜蛋白,是在其自身以及周质空间中蛋白质二硫键形成的直接催化剂DsbA中形成新二硫键的酶之一。DsbB与作为氧化当量来源的辅因子泛醌或甲萘醌相关联。在DsbB酶促反应过程中,与DsbB结合的醌会转变为粉红色(最大吸收波长,约500nm,泛醌)或紫色(最大吸收波长,约550nm,甲萘醌)状态。在这里我们表明,不仅先前提出的Cys-44的硫醇盐形式,而且α-螺旋排列中的Arg-48对于醌的转变也是必不可少的。量子化学模拟表明,硫醇盐阴离子和泛醌与精氨酸带正电荷的胍基部分的适当定位允许形成具有约500nm吸收峰的硫醇盐-泛醌电荷转移复合物以及半胱氨酰醌共价加合物。我们提出电荷转移状态导致过渡态加合物,该加合物接受来自另一个半胱氨酸的亲核攻击以从头生成二硫键。对于一类具有FAD辅因子的真核二硫醇氧化酶,类似的机制是可以想象的。

相似文献

1
Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):287-92. doi: 10.1073/pnas.0507570103. Epub 2005 Dec 29.
2
Mechanism of the electron transfer catalyst DsbB from Escherichia coli.
EMBO J. 2003 Jul 15;22(14):3503-13. doi: 10.1093/emboj/cdg356.
3
Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB.
FEBS Lett. 2008 Oct 15;582(23-24):3301-7. doi: 10.1016/j.febslet.2008.07.063. Epub 2008 Sep 5.
4
Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine.
Biochim Biophys Acta. 2008 Apr;1783(4):520-9. doi: 10.1016/j.bbamcr.2007.11.006. Epub 2007 Nov 26.
6
DsbB catalyzes disulfide bond formation de novo.
J Biol Chem. 2002 Sep 6;277(36):32706-13. doi: 10.1074/jbc.M205433200. Epub 2002 Jun 18.
7
Interchangeable modules in bacterial thiol-disulfide exchange pathways.
Trends Microbiol. 2009 Jan;17(1):6-12. doi: 10.1016/j.tim.2008.10.003. Epub 2008 Dec 6.
9
Role of the cytosolic loop of DsbB in catalytic turnover of the ubiquinone-DsbB complex.
Antioxid Redox Signal. 2006 May-Jun;8(5-6):743-52. doi: 10.1089/ars.2006.8.743.
10

引用本文的文献

1
Catechol redox maintenance in mussel adhesion.
Nat Rev Chem. 2025 Mar;9(3):159-172. doi: 10.1038/s41570-024-00673-4. Epub 2025 Jan 15.
2
Site-selective peptide bond hydrolysis and ligation in water by short peptide-based assemblies.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2321396121. doi: 10.1073/pnas.2321396121. Epub 2024 Jul 23.
3
Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation.
Science. 2021 Jan 1;371(6524). doi: 10.1126/science.abc5667. Epub 2020 Nov 5.
4
Entropy-Driven Mechanisms between Disulfide-Bond Formation Protein A (DsbA) and B (DsbB) in .
ACS Omega. 2019 May 9;4(5):8341-8349. doi: 10.1021/acsomega.9b00474. eCollection 2019 May 31.
5
Disulfide Bond Formation in the Periplasm of .
EcoSal Plus. 2019 Feb;8(2). doi: 10.1128/ecosalplus.ESP-0012-2018.
6
Intramembrane Thiol Oxidoreductases: Evolutionary Convergence and Structural Controversy.
Biochemistry. 2018 Jan 23;57(3):258-266. doi: 10.1021/acs.biochem.7b00876. Epub 2017 Nov 7.
7
Chemistry and Enzymology of Disulfide Cross-Linking in Proteins.
Chem Rev. 2018 Feb 14;118(3):1169-1198. doi: 10.1021/acs.chemrev.7b00123. Epub 2017 Jul 12.
8
Development of structural colour in leaf beetles.
Sci Rep. 2017 May 2;7(1):1373. doi: 10.1038/s41598-017-01496-8.
10
Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria.
Nat Chem Biol. 2015 Apr;11(4):292-8. doi: 10.1038/nchembio.1752. Epub 2015 Feb 16.

本文引用的文献

1
Reactivities of quinone-free DsbB from Escherichia coli.
J Biol Chem. 2005 Sep 23;280(38):33035-44. doi: 10.1074/jbc.M506189200. Epub 2005 Jul 15.
2
The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect.
Trends Biochem Sci. 2005 Jul;30(7):355-7. doi: 10.1016/j.tibs.2005.05.003.
4
Mutational analysis of the disulfide catalysts DsbA and DsbB.
J Bacteriol. 2005 Feb;187(4):1504-10. doi: 10.1128/JB.187.4.1504-1510.2005.
7
Characterization of the menaquinone-dependent disulfide bond formation pathway of Escherichia coli.
J Biol Chem. 2004 Nov 5;279(45):47057-65. doi: 10.1074/jbc.M407153200. Epub 2004 Aug 30.
8
Identification of a quinone-sensitive redox switch in the ArcB sensor kinase.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13318-23. doi: 10.1073/pnas.0403064101. Epub 2004 Aug 23.
9
Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell.
Cell. 2004 May 28;117(5):601-10. doi: 10.1016/s0092-8674(04)00418-0.
10
DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation.
J Biol Chem. 2004 Feb 20;279(8):6761-8. doi: 10.1074/jbc.M310765200. Epub 2003 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验