Remonsellez Francisco, Orell Alvaro, Jerez Carlos A
Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 1, Casilla 653, Santiago, Chile.
Microbiology (Reading). 2006 Jan;152(Pt 1):59-66. doi: 10.1099/mic.0.28241-0.
It has been postulated that inorganic polyphosphate (polyP) and transport of metal-phosphate complexes could participate in heavy metal tolerance in some bacteria. To study if such a system exists in archaea, the presence of polyP was determined by the electron energy loss spectroscopy (EELS) procedure and quantified by using specific enzymic methods in Sulfolobus acidocaldarius, Sulfolobus metallicus and Sulfolobus solfataricus. All three micro-organisms synthesized polyP during growth, but only S. metallicus greatly accumulated polyP granules. The differences in the capacity to accumulate polyP between these archaea may reflect adaptive responses to their natural environment. Thus, S. metallicus could grow in and tolerate up to 200 mM copper sulfate, with a concomitant decrease in its polyP levels with increasing copper concentrations. On the other hand, S. solfataricus could not grow in or tolerate more than 1-5 mM copper sulfate, most likely due to its low levels of polyP. Shifting S. metallicus cells to copper sulfate concentrations up to 100 mM led to a rapid increase in their exopolyphosphatase (PPX) activity which was concomitant in time with a decrease in their polyP levels and a stimulation of phosphate efflux. Furthermore, copper in the range of 10 microM greatly stimulated PPX activity in cell-free extracts from S. metallicus. The results strongly suggest that a metal tolerance mechanism mediated through polyP is functional in members of the genus Sulfolobus. This ability to accumulate and hydrolyse polyP may play an important role not only in the survival of these micro-organisms in sulfidic mineral environments containing high toxic metals concentrations, but also in their applications in biomining.
据推测,无机多聚磷酸盐(polyP)和金属磷酸盐复合物的转运可能参与某些细菌对重金属的耐受性。为了研究古菌中是否存在这样的系统,通过电子能量损失光谱(EELS)程序测定了嗜热栖热菌、嗜热硫化叶菌和金属硫化叶菌中多聚磷酸盐的存在情况,并使用特定的酶法进行了定量。所有这三种微生物在生长过程中都合成了多聚磷酸盐,但只有金属硫化叶菌大量积累了多聚磷酸盐颗粒。这些古菌在积累多聚磷酸盐能力上的差异可能反映了它们对自然环境的适应性反应。因此,金属硫化叶菌能够在高达200 mM的硫酸铜中生长并耐受,随着铜浓度的增加,其多聚磷酸盐水平会随之降低。另一方面,嗜热栖热菌不能在超过1 - 5 mM的硫酸铜中生长或耐受,这很可能是由于其多聚磷酸盐水平较低。将金属硫化叶菌细胞转移到高达100 mM的硫酸铜浓度下会导致其胞外多聚磷酸酶(PPX)活性迅速增加,这与多聚磷酸盐水平的降低以及磷酸盐外排的刺激在时间上是同步的。此外,10 microM范围内的铜极大地刺激了金属硫化叶菌无细胞提取物中的PPX活性。结果有力地表明,通过多聚磷酸盐介导的金属耐受机制在硫化叶菌属成员中发挥作用。这种积累和水解多聚磷酸盐的能力不仅可能在这些微生物在含有高毒性金属浓度的硫化矿环境中的生存中起重要作用,而且在它们在生物采矿中的应用中也起重要作用。