Suppr超能文献

膜翅目单基因座互补性性别决定:一种“不智能”的设计?

Single locus complementary sex determination in Hymenoptera: an "unintelligent" design?

作者信息

van Wilgenburg Ellen, Driessen Gerard, Beukeboom Leo W

机构信息

Department of Zoology, University of Melbourne, VIC 3010, Australia.

出版信息

Front Zool. 2006 Jan 5;3:1. doi: 10.1186/1742-9994-3-1.

Abstract

The haplodiploid sex determining mechanism in Hymenoptera (males are haploid, females are diploid) has played an important role in the evolution of this insect order. In Hymenoptera sex is usually determined by a single locus, heterozygotes are female and hemizygotes are male. Under inbreeding, homozygous diploid and sterile males occur which form a genetic burden for a population. We review life history and genetical traits that may overcome the disadvantages of single locus complementary sex determination (sl-CSD). Behavioural adaptations to avoid matings between relatives include active dispersal from natal patches and mating preferences for non-relatives. In non-social species, temporal and spatial segregation of male and female offspring reduces the burden of sl-CSD. In social species, diploid males are produced at the expense of workers and female reproductives. In some social species, diploid males and diploid male producing queens are killed by workers. Diploid male production may have played a role in the evolution or maintenance of polygyny (multiple queens) and polyandry (multiple mating). Some forms of thelytoky (parthenogenetic female production) increase homozygosity and are therefore incompatible with sl-CSD. We discuss a number of hypothetical adaptations to sl-CSD which should be considered in future studies of this insect order.

摘要

膜翅目昆虫的单双倍体性别决定机制(雄性为单倍体,雌性为二倍体)在该昆虫目的进化过程中发挥了重要作用。在膜翅目中,性别通常由单个基因座决定,杂合子为雌性,半合子为雄性。在近亲繁殖的情况下,会出现纯合二倍体和不育雄性,这对种群构成了遗传负担。我们综述了可能克服单基因座互补性别决定(sl-CSD)缺点的生活史和遗传特征。避免近亲交配的行为适应包括从出生地积极扩散以及对非亲属的交配偏好。在非社会性物种中,雄性和雌性后代在时间和空间上的隔离减轻了sl-CSD的负担。在社会性物种中,二倍体雄性的产生是以工蚁和雌性繁殖蚁为代价的。在一些社会性物种中,二倍体雄性和产生二倍体雄性的蚁后会被工蚁杀死。二倍体雄性的产生可能在多雌制(多个蚁后)和多雄制(多次交配)的进化或维持中发挥了作用。某些形式的产雌孤雌生殖(孤雌生殖产生雌性)会增加纯合性,因此与sl-CSD不相容。我们讨论了一些针对sl-CSD的假设性适应,这些在该昆虫目的未来研究中应予以考虑。

相似文献

3
Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis.
Genetics. 2008 Nov;180(3):1525-35. doi: 10.1534/genetics.107.083907. Epub 2008 Sep 14.
4
5
Sex determination and inbreeding depression in an ant with regular sib-mating.
Heredity (Edinb). 2006 Jul;97(1):75-80. doi: 10.1038/sj.hdy.6800846. Epub 2006 May 17.
6
Population-level consequences of complementary sex determination in a solitary parasitoid.
BMC Evol Biol. 2015 May 30;15:98. doi: 10.1186/s12862-015-0340-2.
7
Absence of single-locus complementary sex determination in the braconid wasps Asobara tabida and Alysia manducator.
Heredity (Edinb). 2000 Jan;84 ( Pt 1):29-36. doi: 10.1046/j.1365-2540.2000.00628.x.
9
Complementary sex determination, inbreeding depression and inbreeding avoidance in a gregarious sawfly.
Heredity (Edinb). 2016 Nov;117(5):326-335. doi: 10.1038/hdy.2016.46. Epub 2016 Jul 6.

引用本文的文献

3
Creating insect neopolyploid lines to study animal polyploid evolution.
Evol Appl. 2024 Sep 8;17(9):e13706. doi: 10.1111/eva.13706. eCollection 2024 Sep.
4
LncRNA gene coordinates complementary sex determination in the Argentine ant.
Sci Adv. 2024 May 31;10(22):eadp1532. doi: 10.1126/sciadv.adp1532.
5
Genetic differentiation at extreme latitudes in the socially plastic sweat bee Halictus rubicundus.
PLoS One. 2024 May 29;19(5):e0302688. doi: 10.1371/journal.pone.0302688. eCollection 2024.
6
Invasion potential of hornets (Hymenoptera: Vespidae: spp.).
Front Insect Sci. 2023 May 9;3:1145158. doi: 10.3389/finsc.2023.1145158. eCollection 2023.
9
Apomixis for no bacteria-induced thelytoky in (Hymenoptera: Eulophidae).
Front Genet. 2023 Jan 23;13:1061100. doi: 10.3389/fgene.2022.1061100. eCollection 2022.
10
Assisted dispersal and reproductive success in an ant species with matchmaking.
Ecol Evol. 2022 Aug 23;12(8):e9236. doi: 10.1002/ece3.9236. eCollection 2022 Aug.

本文引用的文献

1
POPULATION GENETICS, DIPLOID MALES, AND LIMITS TO SOCIAL EVOLUTION OF EUGLOSSINE BEES.
Evolution. 1996 Apr;50(2):931-935. doi: 10.1111/j.1558-5646.1996.tb03903.x.
3
POPULATION STRUCTURE, LOCAL MATE COMPETITION, AND SEX-ALLOCATION PATTERN IN THE ANT MESSOR ACICULATUS.
Evolution. 1995 Apr;49(2):260-265. doi: 10.1111/j.1558-5646.1995.tb02238.x.
4
CONSIDERATIONS ON SPECIATION IN CHALCIDOIDEA (HYMENOPTERA).
Evolution. 1968 Sep;22(3):642-645. doi: 10.1111/j.1558-5646.1968.tb03998.x.
5
DIPLOID MALES IN A PRIMITIVELY EUSOCIAL BEE, LASIOGLOSSUM (DIALICTUS) ZEPHYRUM (HYMENOPTERA: HALICTIDAE).
Evolution. 1990 Sep;44(6):1522-1528. doi: 10.1111/j.1558-5646.1990.tb03843.x.
6
WHY ARE THERE INBREEDING EFFECTS IN HAPLO-DIPLOID SYSTEMS?
Evolution. 1978 Jun;32(2):456-458. doi: 10.1111/j.1558-5646.1978.tb00661.x.
8
[Not Available].
Genet Sel Evol (1983). 1985;17(3):303-10. doi: 10.1186/1297-9686-17-3-303.
9
Sex determination and population biology in the hymenoptera.
Trends Ecol Evol. 1995 Jul;10(7):281-6. doi: 10.1016/0169-5347(95)90011-x.
10
Female control of paternity.
Trends Ecol Evol. 1993 Mar;8(3):100-4. doi: 10.1016/0169-5347(93)90060-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验