Suppr超能文献

兔瞬膜反应中同时恢复的刺激特异性

Stimulus specificity of concurrent recovery in the rabbit nictitating membrane response.

作者信息

Weidemann Gabrielle, Kehoe E James

机构信息

University of New South Wales, Sydney, Australia.

出版信息

Learn Behav. 2005 Aug;33(3):343-62. doi: 10.3758/bf03192863.

Abstract

Three experiments demonstrated that, following the extinction of an established conditioned stimulus (CS; e.g., tone), the pairing of an orthogonal stimulus from another modality (e.g., light) with the unconditioned stimulus (US) results in strong recovery of responding to the extinguished CS. This recovery occurred to about an equal degree regardless of whether or not initial training contained unambiguous stimulus-reinforcer relationships--that is, consistent CS-US pairings--or some degree of ambiguity, including intramodal discrimination training, partial reinforcement, or even cross-modal discrimination training (tone vs. light). Experiments 1 and 2 demonstrated that this recovery of responding was largely specific to the extinguished CS, but moderate generalization to other stimuli from the same modality did appear. The results are discussed with reference to alternative mechanisms applicable to learning-dependent generalization between otherwise distinct CSs. These models assume that such generalization is mediated by either a shared response, shared reinforcer, shared context, or shared hidden units within a layered neural network. A specific layered network is proposed to explain the present results as well as other types of savings seen previously in conditioning of the rabbit nictitating membrane response.

摘要

三项实验表明,在已建立的条件刺激(CS;例如,音调)消退后,将来自另一种模态的正交刺激(例如,光)与无条件刺激(US)配对会导致对消退的CS的反应强烈恢复。无论初始训练是否包含明确的刺激-强化物关系——即一致的CS-US配对——或某种程度的模糊性,包括模态内辨别训练、部分强化,甚至跨模态辨别训练(音调与光),这种恢复程度大致相同。实验1和2表明,这种反应恢复在很大程度上特定于消退的CS,但确实出现了对来自同一模态的其他刺激的适度泛化。将参考适用于在其他不同CS之间基于学习的泛化的替代机制来讨论这些结果。这些模型假设这种泛化是由共享反应、共享强化物、共享情境或分层神经网络内的共享隐藏单元介导的。提出了一个特定的分层网络来解释当前结果以及先前在兔瞬膜反应条件反射中看到的其他类型的节省。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验