Wood Paul L, Khan M Amin, Moskal Joseph R
The Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, 1801 Maple Avenue, Suite 4306, Evanston, IL 60201, USA.
J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Feb 2;831(1-2):313-9. doi: 10.1016/j.jchromb.2005.12.031. Epub 2006 Jan 10.
The GC-MS quantitation of a large number of neurochemicals utilizing a single derivatization step is not common but is provided by the reagent N-(tert-butyldimethylsilyl)-N-methyltrifluro-acetamide (MTBSTFA). Previous workers have utilized this derivative for GC-MS analyses of amino acids, carboxylic acids and urea with electron impact (EI) and with positive chemical ionization (PCI; methane as reagent gas). However, these conditions yield significant fragmentation, decreasing sensitivity and in some cases reducing specificity for quantitation with selected ion monitoring (SIM). Additionally, the majority of studies have used a single internal standard to quantitate many compounds. In this study we demonstrate that using isotopic dilution combined with ammonia as the reagent gas for PCI analyses, results in high precision and sensitivity in analyzing complex neurochemical mixes. We also demonstrate for the first time the utility of this derivative for the analysis of brain polyamines and the dipeptide cysteinyl glycine. In the case of ammonia as the reagent gas, all amino acids, polyamines and urea yielded strong MH ions with little or no fragmentation. In the case of carboxylic acids, M+18 ions predominated but MH ions were also noted. This approach was used to analyze superfusates from hippocampal brain slices and brain tissue extracts from brain lesion studies. The advantages of this methodology include: (i) simple sample preparation; (ii) a single derivatization step; (iii) direct GC-MS analysis of the reaction mix; (iv) high precision as a result of isotopic dilution analyses; (v) high sensitivity and specificity as a result of strong MH ions with ammonia reagent gas; (vi) no hydrolysis of glutamine to glutamate or asparagine to aspartate; and (vii) applicability to a wide range of neurochemicals.
利用单一衍生步骤对大量神经化学物质进行气相色谱 - 质谱联用(GC-MS)定量分析并不常见,但试剂N - (叔丁基二甲基甲硅烷基) - N - 甲基三氟乙酰胺(MTBSTFA)可实现这一目的。先前的研究人员已将此衍生物用于气相色谱 - 质谱联用分析氨基酸、羧酸和尿素,采用电子轰击(EI)和正化学电离(PCI;以甲烷作为反应气)。然而,这些条件会产生显著的碎片,降低灵敏度,在某些情况下还会降低选择离子监测(SIM)定量分析的特异性。此外,大多数研究使用单一内标物对多种化合物进行定量。在本研究中,我们证明,采用同位素稀释并结合氨作为反应气进行PCI分析,在分析复杂的神经化学混合物时可实现高精度和高灵敏度。我们还首次证明了该衍生物在分析脑内多胺和二肽半胱氨酰甘氨酸方面的实用性。以氨作为反应气时,所有氨基酸(氨基酸类)、多胺和尿素均产生强MH离子,几乎没有或完全没有碎片。对于羧酸,M + 18离子占主导,但也观察到了MH离子。该方法用于分析海马脑片的灌流液以及脑损伤研究中的脑组织提取物。这种方法的优点包括:(i)样品制备简单;(ii)单一衍生步骤;(iii)对反应混合物进行直接的气相色谱 - 质谱联用分析;(iv)由于同位素稀释分析而具有高精度;(v)由于使用氨反应气产生强MH离子而具有高灵敏度和特异性;(vi)谷氨酰胺不会水解为谷氨酸,天冬酰胺也不会水解为天冬氨酸;以及(vii)适用于广泛的神经化学物质。