Suppr超能文献

采用CODESSA方法预测人乙醚-去极化激活钾离子通道(hERG)的亲和力

Prediction of hERG potassium channel affinity by the CODESSA approach.

作者信息

Coi Alessio, Massarelli Ilaria, Murgia Laura, Saraceno Marilena, Calderone Vincenzo, Bianucci Anna Maria

机构信息

Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.

出版信息

Bioorg Med Chem. 2006 May 1;14(9):3153-9. doi: 10.1016/j.bmc.2005.12.030. Epub 2006 Jan 19.

Abstract

The problem of predicting torsadogenic cardiotoxicity of drugs is afforded in this work. QSAR studies on a series of molecules, acting as hERG K+ channel blockers, were carried out for this purpose by using the CODESSA program. Molecules belonging to the analyzed dataset are characterized by different therapeutic targets and by high molecular diversity. The predictive power of the obtained models was estimated by means of rigorous validation criteria implying the use of highly diagnostic statistical parameters on the test set, other than the training set. Validation results obtained for a blind set, disjoined from the whole dataset initially considered, confirmed the predictive potency of the models proposed here, so suggesting that they are worth to be considered as a valuable tool for practical applications in predicting the blockade of hERG K+ channels.

摘要

本研究探讨了预测药物致扭转型心律失常心脏毒性的问题。为此,使用CODESSA程序对一系列作为hERG钾通道阻滞剂的分子进行了定量构效关系(QSAR)研究。分析数据集中的分子具有不同的治疗靶点和高分子多样性。通过严格的验证标准评估所得模型的预测能力,这意味着除了训练集之外,还需对测试集使用高度诊断性的统计参数。从最初考虑的整个数据集中分离出的一个盲集所获得的验证结果,证实了本文提出的模型的预测效力,因此表明它们值得被视为预测hERG钾通道阻滞实际应用中的一种有价值工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验