Suppr超能文献

一种用于HERG阻断的复合模型。

A composite model for HERG blockade.

作者信息

Kramer Christian, Beck Bernd, Kriegl Jan M, Clark Timothy

机构信息

Department of Lead Discovery, Boehringer-Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.

出版信息

ChemMedChem. 2008 Feb;3(2):254-65. doi: 10.1002/cmdc.200700221.

Abstract

hERG blockade is one of the major toxicological problems in lead structure optimization. Reliable ligand-based in silico models for predicting hERG blockade therefore have considerable potential for saving time and money, as patch-clamp measurements are very expensive and no crystal structures of the hERG-encoded channel are available. Herein we present a predictive QSAR model for hERG blockade that differentiates between specific and nonspecific binding. Specific binders are identified by preliminary pharmacophore scanning. In addition to descriptor-based models for the compounds selected as hitting one of two different pharmacophores, we also use a model for nonspecific binding that reproduces blocking properties of molecules that do not fit either of the two pharmacophores. PLS and SVR models based on interpretable quantum mechanically derived descriptors on a literature dataset of 113 molecules reach overall R(2) values between 0.60 and 0.70 for independent validation sets and R(2) values between 0.39 and 0.76 after partitioning according to the pharmacophore search for the test sets. Our findings suggest that hERG blockade may occur through different types of binding, so that several different models may be necessary to assess hERG toxicity.

摘要

hERG 阻滞是先导结构优化中主要的毒理学问题之一。因此,可靠的基于配体的计算机模拟模型对于预测 hERG 阻滞具有巨大潜力,因为膜片钳测量成本非常高,且 hERG 编码通道的晶体结构尚未获得。在此,我们提出了一种用于 hERG 阻滞的预测性 QSAR 模型,该模型能够区分特异性结合和非特异性结合。通过初步的药效团扫描来识别特异性结合剂。除了针对被选为符合两种不同药效团之一的化合物建立基于描述符的模型外,我们还使用了一种非特异性结合模型,该模型可再现不符合两种药效团中任何一种的分子的阻滞特性。基于 113 个分子的文献数据集上可解释的量子力学衍生描述符建立的 PLS 和 SVR 模型,对于独立验证集,总体 R(2) 值在 0.60 至 0.70 之间,根据药效团搜索对测试集进行划分后,R(2) 值在 0.39 至 0.76 之间。我们的研究结果表明,hERG 阻滞可能通过不同类型的结合发生,因此可能需要几种不同的模型来评估 hERG 毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验