Suppr超能文献

一种用于对人乙醚 - 去极化相关基因(hERG)钾通道阻滞剂进行分类的二元定量构效关系(QSAR)模型。

A binary QSAR model for classification of hERG potassium channel blockers.

作者信息

Thai Khac-Minh, Ecker Gerhard F

机构信息

Emerging Field Pharmacoinformatics, Department of Medicinal Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.

出版信息

Bioorg Med Chem. 2008 Apr 1;16(7):4107-19. doi: 10.1016/j.bmc.2008.01.017. Epub 2008 Jan 16.

Abstract

Acquired long QT syndrome causes severe cardiac side effects and represents a major problem in clinical studies of drug candidates. One of the reasons for development of arrhythmias related to long QT is inhibition of the human ether-a-go-go-related-gene (hERG) potassium channel. Therefore, early prediction of hERG K(+) channel affinity of drug candidates is becoming increasingly important in the drug discovery process. Binary QSAR models with threshold values at IC(50)=1 and of 10 microM, respectively, were generated using two different sets of descriptors. One set comprising 32 P_VSA descriptors and the other one utilizing a set of descriptors identified out of a large set via a feature selection algorithm. For the full dataset, the power for classification of hERG blockers was 82-88%, which meets prior classification models. Considering the fact that 2D descriptors are fast and easy to calculate, these binary QSAR models are versatile tools for use in virtual screening protocols.

摘要

获得性长QT综合征会导致严重的心脏副作用,并且在候选药物的临床研究中是一个主要问题。与长QT相关的心律失常发生的原因之一是人类醚-去极化相关基因(hERG)钾通道受到抑制。因此,在药物研发过程中,早期预测候选药物对hERG钾通道的亲和力变得越来越重要。分别使用两组不同的描述符生成了IC50值为1和10微摩尔时具有阈值的二元QSAR模型。一组包含32个P_VSA描述符,另一组使用通过特征选择算法从大量描述符中识别出的一组描述符。对于完整数据集,hERG阻滞剂分类的能力为82%-88%,这与先前的分类模型相符。考虑到二维描述符计算快速且容易,这些二元QSAR模型是用于虚拟筛选方案的通用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验