Suppr超能文献

黄色粘球菌中的手风琴波。

Accordion waves in Myxococcus xanthus.

作者信息

Sliusarenko Oleksii, Neu John, Zusman David R, Oster George

机构信息

Departments of Cell and Molecular Biology and Mathematics, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1534-9. doi: 10.1073/pnas.0507720103. Epub 2006 Jan 23.

Abstract

Myxococcus xanthus are Gram-negative bacteria that glide on solid surfaces, periodically reversing their direction of movement. When starved, M. xanthus cells organize their movements into waves of cell density that sweep over the colony surface. These waves are unique: Although they appear to interpenetrate, they actually reflect off one another when they collide, so that each wave crest oscillates back and forth with no net displacement. Because the waves reflect the coordinated back and forth oscillations of the individual bacteria, we call them "accordion" waves. The spatial oscillations of individuals are a manifestation of an internal biochemical oscillator, probably involving the Frz chemosensory system. These internal "clocks," each of which is quite variable, are synchronized by collisions between individual cells using a contact-mediated signal-transduction system. The result of collision signaling is that the collective spatial behavior is much less variable than the individual oscillators. In this work, we present experimental observations in which individual cells marked with GFP can be followed in groups of unlabeled cells in monolayer cultures. These data, together with an agent-based computational model demonstrate that the only properties required to explain the ripple patterns are an asymmetric biochemical limit cycle that controls direction reversals and asymmetric contact-induced signaling between cells: Head-to-head signaling is stronger than head-to-tail signaling. Together, the experimental and computational data provide new insights into how populations of interacting oscillators can synchronize and organize spatially to produce morphogenetic patterns that may have parallels in higher organisms.

摘要

黄色粘球菌是革兰氏阴性菌,能在固体表面滑动,并周期性地改变其运动方向。饥饿时,黄色粘球菌细胞会将其运动组织成细胞密度波,扫过菌落表面。这些波很独特:尽管它们看起来相互穿透,但实际上在碰撞时会相互反射,因此每个波峰都会来回振荡,没有净位移。由于这些波反映了单个细菌的协同来回振荡,我们称它们为“手风琴”波。个体的空间振荡是一种内部生化振荡器的表现,可能涉及Frz化学传感系统。这些内部“时钟”,每个都有很大的变异性,通过使用接触介导的信号转导系统在单个细胞之间的碰撞而同步。碰撞信号的结果是,集体空间行为的变异性比单个振荡器小得多。在这项工作中,我们展示了实验观察结果,其中在单层培养的未标记细胞群体中可以跟踪标记有绿色荧光蛋白的单个细胞。这些数据,连同基于主体的计算模型表明,解释波纹模式所需的唯一属性是一个控制方向反转的不对称生化极限环和细胞之间的不对称接触诱导信号:头对头信号比头对尾信号更强。实验和计算数据共同为相互作用的振荡器群体如何同步并在空间上组织以产生可能与高等生物相似的形态发生模式提供了新的见解。

相似文献

1
Accordion waves in Myxococcus xanthus.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1534-9. doi: 10.1073/pnas.0507720103. Epub 2006 Jan 23.
2
A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development.
Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15760-5. doi: 10.1073/pnas.0407111101. Epub 2004 Oct 20.
3
Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
Microbiol Mol Biol Rev. 1999 Sep;63(3):621-41. doi: 10.1128/MMBR.63.3.621-641.1999.
4
Dual biochemical oscillators may control cellular reversals in Myxococcus xanthus.
Biophys J. 2014 Dec 2;107(11):2700-11. doi: 10.1016/j.bpj.2014.09.046.
5
A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus.
Nat Microbiol. 2018 Aug;3(8):948-959. doi: 10.1038/s41564-018-0203-x. Epub 2018 Jul 16.
6
Regulations governing the multicellular lifestyle of Myxococcus xanthus.
Curr Opin Microbiol. 2016 Dec;34:104-110. doi: 10.1016/j.mib.2016.08.009. Epub 2016 Sep 17.
7
Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus.
EMBO J. 2007 Oct 31;26(21):4433-44. doi: 10.1038/sj.emboj.7601877. Epub 2007 Oct 11.
8
Regulation of directed motility in Myxococcus xanthus.
Mol Microbiol. 1997 Jun;24(5):885-93. doi: 10.1046/j.1365-2958.1997.4261783.x.
9
Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus.
Curr Opin Microbiol. 2012 Dec;15(6):751-7. doi: 10.1016/j.mib.2012.10.005. Epub 2012 Nov 8.
10
Genetic circuitry controlling motility behaviors of Myxococcus xanthus.
Bioessays. 2008 Aug;30(8):733-43. doi: 10.1002/bies.20790.

引用本文的文献

1
The Limits of Our Explanation: A Case Study in Cooperation.
Biol Theory. 2025;20(1):25-40. doi: 10.1007/s13752-024-00479-z. Epub 2024 Nov 12.
2
Linking single-cell decisions to collective behaviours in social bacteria.
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190755. doi: 10.1098/rstb.2019.0755. Epub 2021 Jan 25.
3
Light-switchable propulsion of active particles with reversible interactions.
Nat Commun. 2020 May 26;11(1):2628. doi: 10.1038/s41467-020-15764-1.
4
Biophysics at the coffee shop: lessons learned working with George Oster.
Mol Biol Cell. 2019 Jul 22;30(16):1882-1889. doi: 10.1091/mbc.E19-02-0107.
5
Agent-Based Modeling Reveals Possible Mechanisms for Observed Aggregation Cell Behaviors.
Biophys J. 2018 Dec 18;115(12):2499-2511. doi: 10.1016/j.bpj.2018.11.005. Epub 2018 Nov 10.
6
Data-driven modeling reveals cell behaviors controlling self-organization during development.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4592-E4601. doi: 10.1073/pnas.1620981114. Epub 2017 May 22.
7
Wavenumber selection in coupled transport equations.
J Math Biol. 2017 Nov;75(5):1047-1073. doi: 10.1007/s00285-017-1107-8. Epub 2017 Feb 21.
8
Myxobacteria: Moving, Killing, Feeding, and Surviving Together.
Front Microbiol. 2016 May 26;7:781. doi: 10.3389/fmicb.2016.00781. eCollection 2016.
9
Dual biochemical oscillators may control cellular reversals in Myxococcus xanthus.
Biophys J. 2014 Dec 2;107(11):2700-11. doi: 10.1016/j.bpj.2014.09.046.
10
Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility.
PLoS Comput Biol. 2014 May 8;10(5):e1003619. doi: 10.1371/journal.pcbi.1003619. eCollection 2014 May.

本文引用的文献

2
Regulated pole-to-pole oscillations of a bacterial gliding motility protein.
Science. 2005 Nov 4;310(5749):855-7. doi: 10.1126/science.1119052.
3
A three-dimensional model of myxobacterial aggregation by contact-mediated interactions.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11308-12. doi: 10.1073/pnas.0504259102. Epub 2005 Aug 1.
4
Cell-to-cell transfer of bacterial outer membrane lipoproteins.
Science. 2005 Jul 1;309(5731):125-7. doi: 10.1126/science.1112440.
5
Reversing cell polarity: evidence and hypothesis.
Curr Opin Microbiol. 2005 Apr;8(2):216-21. doi: 10.1016/j.mib.2005.02.002.
6
Developmental waves in myxobacteria: A distinctive pattern formation mechanism.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 1):041911. doi: 10.1103/PhysRevE.70.041911. Epub 2004 Oct 29.
7
A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development.
Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15760-5. doi: 10.1073/pnas.0407111101. Epub 2004 Oct 20.
8
Signaling in myxobacteria.
Annu Rev Microbiol. 2004;58:75-98. doi: 10.1146/annurev.micro.58.030603.123620.
10
Clocks and patterns in myxobacteria: a remembrance of Art Winfree.
J Theor Biol. 2004 Oct 21;230(4):451-8. doi: 10.1016/j.jtbi.2004.04.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验