Suppr超能文献

应用非线性分析方法识别微生物群落结构与地下水地球化学之间的关系。

Application of nonlinear analysis methods for identifying relationships between microbial community structure and groundwater geochemistry.

作者信息

Schryver Jack C, Brandt Craig C, Pfiffner Susan M, Palumbo Anthony V, Peacock Aaron D, White David C, McKinley James P, Long Philip E

机构信息

Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Microb Ecol. 2006 Feb;51(2):177-88. doi: 10.1007/s00248-004-0137-0. Epub 2006 Jan 31.

Abstract

The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

摘要

地下水地球化学与微生物群落结构之间的关系可能很复杂,难以评估。我们应用非线性和广义线性数据分析方法,将微生物生物标志物(磷脂脂肪酸,PLFA)与希普罗克铀矿尾矿处置场的地下水地球化学特征相关联,该场地主要受铀、硫酸盐和硝酸盐污染。首先,使用前馈人工神经网络(NN)构建预测模型,从地球化学数据预测PLFA类别。为降低过拟合风险,基于隐藏节点的修剪和冗余预测变量(地球化学变量)的消除,选择简约的NN架构。所得的NN模型大大优于广义线性模型。敏感性分析表明,指示河流影响的氚和铀在预测PLFA类别的分布方面很重要。相比之下,硝酸盐浓度和无机碳的重要性最低,总离子强度的重要性居中。其次,使用前馈NN的一个变体从PLFA数据中提取非线性主成分(NPC)。NPC根据相似的地球化学特征对样本进行分组。革兰氏阴性菌和真核生物的PLFA指标与污染程度较低的井组相关。污染程度较高的样本所含的微生物群落以末端分支饱和脂肪酸和分支单不饱和脂肪酸为主,这些脂肪酸表明存在金属还原菌、放线菌和革兰氏阳性菌。这些结果表明,该场地的微生物群落与地球化学相关联,地球化学知识有助于预测群落组成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验