Tsai Kun-Nan, Lin Shu-Hsi, Liu Wei-Chung, Wang Daryi
Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
Department of Medical Research and Development, Show Chwan Health Care System, Changhua, 505, Taiwan.
BMC Syst Biol. 2015 Sep 4;9:54. doi: 10.1186/s12918-015-0199-2.
Microbial interactions are ubiquitous in nature. Recently, many similarity-based approaches have been developed to study the interaction in microbial ecosystems. These approaches can only explain the non-directional interactions yet a more complete view on how microbes regulate each other remains elusive. In addition, the strength of microbial interactions is difficult to be quantified by only using correlation analysis.
In this study, a rule-based microbial network (RMN) algorithm, which integrates regulatory OTU-triplet model with parametric weighting function, is being developed to construct microbial regulatory networks. The RMN algorithm not only can extrapolate the cooperative and competitive relationships between microbes, but also can infer the direction of such interactions. In addition, RMN algorithm can theoretically characterize the regulatory relationship composed of microbial pairs with low correlation coefficient in microbial networks. Our results suggested that Bifidobacterium, Streptococcus, Clostridium XI, and Bacteroides are essential for causing abundance changes of Veillonella in gut microbiome. Furthermore, we inferred some possible microbial interactions, including the competitive relationship between Veillonella and Bacteroides, and the cooperative relationship between Veillonella and Clostridium XI.
The RMN algorithm provides the reconstruction of gut microbe networks, and can shed light on the dynamical interactions of microbes in the infant intestinal tract.
微生物相互作用在自然界中无处不在。最近,已经开发了许多基于相似性的方法来研究微生物生态系统中的相互作用。这些方法只能解释非定向相互作用,然而,关于微生物如何相互调节的更完整观点仍然难以捉摸。此外,仅使用相关性分析很难量化微生物相互作用的强度。
在本研究中,一种基于规则的微生物网络(RMN)算法正在被开发,该算法将调控OTU三元组模型与参数加权函数相结合,用于构建微生物调控网络。RMN算法不仅可以推断微生物之间的合作和竞争关系,还可以推断这种相互作用的方向。此外,RMN算法在理论上可以表征微生物网络中由低相关系数的微生物对组成的调控关系。我们的结果表明,双歧杆菌、链球菌、XI梭菌和拟杆菌对于引起肠道微生物群中韦荣球菌丰度变化至关重要。此外,我们推断了一些可能的微生物相互作用,包括韦荣球菌与拟杆菌之间的竞争关系,以及韦荣球菌与XI梭菌之间的合作关系。
RMN算法为肠道微生物网络的重建提供了方法,并能够揭示婴儿肠道中微生物的动态相互作用。