Winderl Christian, Anneser Bettina, Griebler Christian, Meckenstock Rainer U, Lueders Tillmann
Institute of Groundwater Ecology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
Appl Environ Microbiol. 2008 Feb;74(3):792-801. doi: 10.1128/AEM.01951-07. Epub 2007 Dec 14.
Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate--an important electron acceptor--meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota.
微生物降解是受污染地下水环境中自然衰减的唯一可持续组成部分,然而其控制机制,尤其是在厌氧含水层中的控制机制,仍未得到充分理解。因此,关键微生物群落特定种群与各自降解过程发生之间的假定空间相关性仍有待揭示。我们据此对受焦油影响的含水层的高分辨率深度剖面中的微生物群落分布进行了表征,在该含水层中,苯、甲苯、乙苯和二甲苯(BTEX)的降解主要依赖于硫酸盐还原。我们进行了深度分辨的末端限制性片段长度多态性指纹分析以及细菌16S rRNA和苄基琥珀酸合酶基因(bssA)的定量PCR,以量化总微生物群和特定厌氧甲苯降解菌的分布。我们发现,与已知的δ-变形菌纲铁还原菌和硫酸盐还原菌(地杆菌属和脱硫荚膜菌属)以及梭菌属发酵菌(沉积物杆菌属)相关的高度专业化的微生物降解群落,存在于高度污染羽流核心下方的生物地球化学梯度带内。在这个BTEX化合物与重要电子受体硫酸盐相遇的区域,还存在着数量惊人的携带先前检测到的F1簇bssA基因的未鉴定厌氧甲苯降解菌(C. Winderl、S. Schaefer和T. Lueders,《环境微生物学》9:1035 - 1046,2007年)。我们的数据表明,这个生物地球化学梯度带是厌氧甲苯降解的热点。这些发现表明,受污染含水层中特定含水层微生物群的分布与降解过程紧密相关,这对于基于含水层固有微生物群评估和预测自然衰减可能具有重要价值。