Suppr超能文献

鸸鹋(新荷兰鸸鹋)听觉脑干中的双耳时间差电路。

Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).

作者信息

MacLeod Katrina M, Soares Daphne, Carr Catherine E

机构信息

Department of Biology, University of Maryland, College Park, Maryland 20742, USA.

出版信息

J Comp Neurol. 2006 Mar 10;495(2):185-201. doi: 10.1002/cne.20862.

Abstract

In the auditory system, precise encoding of temporal information is critical for sound localization, a task with direct behavioral relevance. Interaural timing differences (ITDs) are computed using axonal delay lines and cellular coincidence detectors in nucleus laminaris (NL). We present morphological and physiological data on the timing circuits in the emu, Dromaius novaehollandiae, and compare these results with those from the barn owl (Tyto alba) and the domestic chick (Gallus gallus). Emu NL was composed of a compact monolayer of bitufted neurons whose two thick primary dendrites were oriented dorsoventrally. They showed a gradient in dendritic length along the presumed tonotopic axis. The NL and nucleus magnocellularis (NM) neurons were strongly immunoreactive for parvalbumin, a calcium-binding protein. Antibodies against synaptic vesicle protein 2 and glutamic acid decarboxlyase revealed that excitatory synapses terminated heavily on the dendritic tufts, while inhibitory terminals were distributed more uniformly. Physiological recordings from brainstem slices demonstrated contralateral delay lines from NM to NL. During whole-cell patch-clamp recordings, NM and NL neurons fired single spikes and were doubly rectifying. NL and NM neurons had input resistances of 30.0 +/- 19.9 Momega and 49.0 +/- 25.6 Momega, respectively, and membrane time constants of 12.8 +/- 3.8 ms and 3.9 +/- 0.2 ms. These results provide further support for the Jeffress model for sound localization in birds. The emu timing circuits showed the ancestral (plesiomorphic) pattern in their anatomy and physiology, while differences in dendritic structure compared to chick and owl may indicate specialization for encoding ITDs at low best frequencies.

摘要

在听觉系统中,精确编码时间信息对于声音定位至关重要,而声音定位是一项具有直接行为相关性的任务。耳间时间差(ITD)是通过轴突延迟线和层状核(NL)中的细胞重合检测器来计算的。我们展示了鸸鹋(Dromaius novaehollandiae)时间电路的形态学和生理学数据,并将这些结果与仓鸮(Tyto alba)和家鸡(Gallus gallus)的结果进行比较。鸸鹋的NL由紧密排列的双簇神经元单层组成,其两条粗大的初级树突沿背腹方向排列。它们在假定的音频拓扑轴上显示出树突长度的梯度。NL和大细胞神经核(NM)的神经元对钙结合蛋白小白蛋白具有强烈的免疫反应性。针对突触囊泡蛋白2和谷氨酸脱羧酶的抗体显示,兴奋性突触大量终止于树突簇上,而抑制性终末分布更为均匀。脑干切片的生理学记录显示了从NM到NL的对侧延迟线。在全细胞膜片钳记录期间,NM和NL神经元发放单个动作电位且具有双整流特性。NL和NM神经元的输入电阻分别为30.0±19.9 MΩ和49.0±25.6 MΩ,膜时间常数分别为12.8±3.8 ms和3.9±0.2 ms。这些结果为鸟类声音定位的杰弗里斯模型提供了进一步支持。鸸鹋的时间电路在解剖学和生理学上显示出祖先(近裔共性)模式,而与鸡和猫头鹰相比,其树突结构的差异可能表明在低最佳频率下编码ITD的特化。

相似文献

3
Detection of interaural time differences in the alligator.短吻鳄两耳间时间差的检测。
J Neurosci. 2009 Jun 24;29(25):7978-90. doi: 10.1523/JNEUROSCI.6154-08.2009.

引用本文的文献

6
Sound Localization Strategies in Three Predators.三种食肉动物的声音定位策略
Brain Behav Evol. 2015 Sep;86(1):17-27. doi: 10.1159/000435946. Epub 2015 Sep 24.
7
Maps of interaural delay in the owl's nucleus laminaris.猫头鹰层状核中的双耳延迟图谱。
J Neurophysiol. 2015 Sep;114(3):1862-73. doi: 10.1152/jn.00644.2015. Epub 2015 Jul 29.
8
Sound localization in the alligator.短吻鳄的声音定位
Hear Res. 2015 Nov;329:11-20. doi: 10.1016/j.heares.2015.05.009. Epub 2015 Jun 3.
10
A functional circuit model of interaural time difference processing.双耳时间差处理的功能电路模型。
J Neurophysiol. 2014 Dec 1;112(11):2850-64. doi: 10.1152/jn.00484.2014. Epub 2014 Sep 3.

本文引用的文献

1
A place theory of sound localization.声音定位的地点理论。
J Comp Physiol Psychol. 1948 Feb;41(1):35-9. doi: 10.1037/h0061495.
5
Modeling coincidence detection in nucleus laminaris.模拟层状核中的巧合检测。
Biol Cybern. 2003 Nov;89(5):388-96. doi: 10.1007/s00422-003-0444-4. Epub 2003 Nov 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验