Suppr超能文献

一种用于检测仓鸮脑干中双耳时间差的电路。

A circuit for detection of interaural time differences in the brain stem of the barn owl.

作者信息

Carr C E, Konishi M

机构信息

Division of Biology, California Institute of Technology, Pasadena 91125.

出版信息

J Neurosci. 1990 Oct;10(10):3227-46. doi: 10.1523/JNEUROSCI.10-10-03227.1990.

Abstract

Detection of interaural time differences underlies azimuthal sound localization in the barn owl Tyto alba. Axons of the cochlear nucleus magnocellularis, and their targets in the binaural nucleus laminaris, form the circuit responsible for encoding these interaural time differences. The nucleus laminaris receives bilateral inputs from the cochlear nucleus magnocellularis such that axons from the ipsilateral cochlear nucleus enter the nucleus laminaris dorsally, while contralateral axons enter from the ventral side. This interdigitating projection to the nucleus laminaris is tonotopic, and the afferents are both sharply tuned and matched in frequency to the neighboring afferents. Recordings of phase-locked spikes in the afferents show an orderly change in the arrival time of the spikes as a function of distance from the point of their entry into the nucleus laminaris. The same range of conduction time (160 mu sec) was found over the 700-mu m depth of the nucleus laminaris for all frequencies examined (4-7.5 kHz) and corresponds to the range of interaural time differences available to the barn owl. The estimated conduction velocity in the axons is low (3-5 m/sec) and may be regulated by short internodal distances (60 mu m) within the nucleus laminaris. Neurons of the nucleus laminaris have large somata and very short dendrites. These cells are frequency selective and phase-lock to both monaural and binaural stimuli. The arrival time of phase-locked spikes in many of these neurons differs between the ipsilateral and contralateral inputs. When this disparity is nullified by imposition of an appropriate interaural time difference, the neurons respond maximally. The number of spikes elicited in response to a favorable interaural time difference is roughly double that elicited by a monaural stimulus. Spike counts for unfavorable interaural time differences fall well below monaural response levels. These findings indicate that the magnocellular afferents work as delay lines, and the laminaris neurons work as co-incidence detectors. The orderly distribution of conduction times, the predictability of favorable interaural time differences from monaural phase responses, and the pattern of the anatomical projection from the nucleus laminaris to the central nucleus of the inferior colliculus suggest that interaural time differences and their phase equivalents are mapped in each frequency band along the dorsoventral axis of the nucleus laminaris.

摘要

仓鸮(Tyto alba)通过检测双耳时间差来进行方位声音定位。耳蜗大细胞核的轴突及其在双耳层状核中的靶标,构成了负责编码这些双耳时间差的神经回路。层状核从耳蜗大细胞核接收双侧输入,使得来自同侧耳蜗核的轴突从背侧进入层状核,而对侧轴突从腹侧进入。这种向层状核的交叉投射是音调定位的,传入纤维在频率上既尖锐调谐又与相邻传入纤维匹配。对传入纤维中锁相尖峰的记录显示,尖峰到达时间随其进入层状核的点的距离而有序变化。在层状核700微米深度范围内,所有检测频率(4 - 7.5千赫)都发现了相同的传导时间范围(160微秒),这与仓鸮可用的双耳时间差范围相对应。轴突中的估计传导速度较低(3 - 5米/秒),可能受层状核内短节间距离(60微米)调节。层状核的神经元具有大的胞体和非常短的树突。这些细胞对频率有选择性,并且对单耳和双耳刺激都能锁相。许多这些神经元中,同侧和对侧输入的锁相尖峰到达时间不同。当通过施加适当的双耳时间差使这种差异消除时,神经元反应最大。对有利双耳时间差的反应所引发的尖峰数量大约是单耳刺激引发数量的两倍。对不利双耳时间差的尖峰计数远低于单耳反应水平。这些发现表明,大细胞传入纤维起到延迟线的作用,而层状核神经元起到符合探测器的作用。传导时间的有序分布、从单耳相位反应预测有利双耳时间差的可预测性,以及从层状核到下丘中央核的解剖投射模式表明,双耳时间差及其相位等效物在沿着层状核背腹轴的每个频带中进行映射。

相似文献

2
Neural map of interaural phase difference in the owl's brainstem.猫头鹰脑干中双耳相位差的神经图谱。
Proc Natl Acad Sci U S A. 1986 Nov;83(21):8400-4. doi: 10.1073/pnas.83.21.8400.
3
4
7
Detection of interaural time differences in the alligator.短吻鳄两耳间时间差的检测。
J Neurosci. 2009 Jun 24;29(25):7978-90. doi: 10.1523/JNEUROSCI.6154-08.2009.
9
Coding interaural time differences at low best frequencies in the barn owl.仓鸮中低最佳频率下双耳时间差的编码
J Physiol Paris. 2004 Jan-Jun;98(1-3):99-112. doi: 10.1016/j.jphysparis.2004.03.003.

引用本文的文献

2
Survey of temporal coding of sensory information.感觉信息的时间编码研究
Front Comput Neurosci. 2025 Jul 2;19:1571109. doi: 10.3389/fncom.2025.1571109. eCollection 2025.
4
Single Neuron Contributions to the Auditory Brainstem EEG.单个神经元对听觉脑干脑电图的贡献。
J Neurosci. 2025 May 28;45(22):e1139242025. doi: 10.1523/JNEUROSCI.1139-24.2025.
5
8
Binaural fusion: Complexities in definition and measurement.双耳融合:定义和测量的复杂性。
J Acoust Soc Am. 2024 Oct 1;156(4):2395-2408. doi: 10.1121/10.0030476.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验