Cui Longzhu, Iwamoto Akira, Lian Jian-Qi, Neoh Hui-min, Maruyama Toshiki, Horikawa Yataro, Hiramatsu Keiichi
Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
Antimicrob Agents Chemother. 2006 Feb;50(2):428-38. doi: 10.1128/AAC.50.2.428-438.2006.
As an aggressive pathogen, Staphylococcus aureus poses a significant public health threat and is becoming increasingly resistant to currently available antibiotics, including vancomycin, the drug of last resort for gram-positive bacterial infections. S. aureus with intermediate levels of resistance to vancomycin (vancomycin-intermediate S. aureus [VISA]) was first identified in 1996. The resistance mechanism of VISA, however, has not yet been clarified. We have previously shown that cell wall thickening is a common feature of VISA, and we have proposed that a thickened cell wall is a phenotypic determinant for vancomycin resistance in VISA (L. Cui, X. Ma, K. Sato, et al., J. Clin. Microbiol. 41:5-14, 2003). Here we show the occurrence of an anomalous diffusion of vancomycin through the VISA cell wall, which is caused by clogging of the cell wall with vancomycin itself. A series of experiments demonstrates that the thickened cell wall of VISA could protect ongoing peptidoglycan biosynthesis in the cytoplasmic membrane from vancomycin inhibition, allowing the cells to continue producing nascent cell wall peptidoglycan and thus making the cells resistant to vancomycin. We conclude that the cooperative effect of the clogging and cell wall thickening enables VISA to prevent vancomycin from reaching its true target in the cytoplasmic membrane, exhibiting a new class of antibiotic resistance in gram-positive pathogens.
作为一种侵袭性病原菌,金黄色葡萄球菌对公众健康构成重大威胁,并且对包括万古霉素(革兰氏阳性菌感染的最后一道防线药物)在内的现有抗生素的耐药性日益增强。对万古霉素具有中等耐药水平的金黄色葡萄球菌(万古霉素中介金黄色葡萄球菌[VISA])于1996年首次被发现。然而,VISA的耐药机制尚未阐明。我们之前已表明细胞壁增厚是VISA的一个共同特征,并且我们提出增厚的细胞壁是VISA中万古霉素耐药性的一个表型决定因素(L. Cui、X. Ma、K. Sato等人,《临床微生物学杂志》41:5 - 14,2003年)。在此我们展示了万古霉素通过VISA细胞壁的异常扩散现象,这是由万古霉素自身堵塞细胞壁所导致的。一系列实验表明,VISA增厚的细胞壁能够保护细胞质膜中正在进行的肽聚糖生物合成免受万古霉素抑制,使细胞能够继续产生新生的细胞壁肽聚糖,从而使细胞对万古霉素产生耐药性。我们得出结论,堵塞和细胞壁增厚的协同作用使VISA能够阻止万古霉素到达其在细胞质膜中的真正靶点,在革兰氏阳性病原菌中表现出一类新的抗生素耐药性。