Suppr超能文献

源自万古霉素中介金黄色葡萄球菌的新型抗生素耐药机制。

Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus.

作者信息

Cui Longzhu, Iwamoto Akira, Lian Jian-Qi, Neoh Hui-min, Maruyama Toshiki, Horikawa Yataro, Hiramatsu Keiichi

机构信息

Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.

出版信息

Antimicrob Agents Chemother. 2006 Feb;50(2):428-38. doi: 10.1128/AAC.50.2.428-438.2006.

Abstract

As an aggressive pathogen, Staphylococcus aureus poses a significant public health threat and is becoming increasingly resistant to currently available antibiotics, including vancomycin, the drug of last resort for gram-positive bacterial infections. S. aureus with intermediate levels of resistance to vancomycin (vancomycin-intermediate S. aureus [VISA]) was first identified in 1996. The resistance mechanism of VISA, however, has not yet been clarified. We have previously shown that cell wall thickening is a common feature of VISA, and we have proposed that a thickened cell wall is a phenotypic determinant for vancomycin resistance in VISA (L. Cui, X. Ma, K. Sato, et al., J. Clin. Microbiol. 41:5-14, 2003). Here we show the occurrence of an anomalous diffusion of vancomycin through the VISA cell wall, which is caused by clogging of the cell wall with vancomycin itself. A series of experiments demonstrates that the thickened cell wall of VISA could protect ongoing peptidoglycan biosynthesis in the cytoplasmic membrane from vancomycin inhibition, allowing the cells to continue producing nascent cell wall peptidoglycan and thus making the cells resistant to vancomycin. We conclude that the cooperative effect of the clogging and cell wall thickening enables VISA to prevent vancomycin from reaching its true target in the cytoplasmic membrane, exhibiting a new class of antibiotic resistance in gram-positive pathogens.

摘要

作为一种侵袭性病原菌,金黄色葡萄球菌对公众健康构成重大威胁,并且对包括万古霉素(革兰氏阳性菌感染的最后一道防线药物)在内的现有抗生素的耐药性日益增强。对万古霉素具有中等耐药水平的金黄色葡萄球菌(万古霉素中介金黄色葡萄球菌[VISA])于1996年首次被发现。然而,VISA的耐药机制尚未阐明。我们之前已表明细胞壁增厚是VISA的一个共同特征,并且我们提出增厚的细胞壁是VISA中万古霉素耐药性的一个表型决定因素(L. Cui、X. Ma、K. Sato等人,《临床微生物学杂志》41:5 - 14,2003年)。在此我们展示了万古霉素通过VISA细胞壁的异常扩散现象,这是由万古霉素自身堵塞细胞壁所导致的。一系列实验表明,VISA增厚的细胞壁能够保护细胞质膜中正在进行的肽聚糖生物合成免受万古霉素抑制,使细胞能够继续产生新生的细胞壁肽聚糖,从而使细胞对万古霉素产生耐药性。我们得出结论,堵塞和细胞壁增厚的协同作用使VISA能够阻止万古霉素到达其在细胞质膜中的真正靶点,在革兰氏阳性病原菌中表现出一类新的抗生素耐药性。

相似文献

5
Mechanisms of vancomycin resistance in Staphylococcus aureus.金黄色葡萄球菌中万古霉素耐药的机制。
J Clin Invest. 2014 Jul;124(7):2836-40. doi: 10.1172/JCI68834. Epub 2014 Jul 1.
9
Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis.替考拉宁对细胞壁前体的双重靶向作用导致细胞裂解。
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6510-6517. doi: 10.1128/AAC.01050-16. Print 2016 Nov.

引用本文的文献

4
Muropeptides and muropeptide transporters impact on host immune response. 肽聚糖及其转运蛋白影响宿主免疫反应。
Gut Microbes. 2024 Jan-Dec;16(1):2418412. doi: 10.1080/19490976.2024.2418412. Epub 2024 Oct 22.
10
Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis.多重耐药菌:作用机制与预防。
Biomed Res Int. 2022 Sep 5;2022:5419874. doi: 10.1155/2022/5419874. eCollection 2022.

本文引用的文献

1
Vancomycin resistance in staphylococci.葡萄球菌中的万古霉素耐药性。
Drug Resist Updat. 1998;1(2):135-50. doi: 10.1016/s1368-7646(98)80029-0.
2
NUTRITIONAL REQUIREMENTS FOR BACTERIAL CELL WALL SYNTHESIS.细菌细胞壁合成的营养需求。
J Bacteriol. 1961 Jan;81(1):44-50. doi: 10.1128/jb.81.1.44-50.1961.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验