Gardel M L, Nakamura F, Hartwig J H, Crocker J C, Stossel T P, Weitz D A
Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1762-7. doi: 10.1073/pnas.0504777103. Epub 2006 Jan 30.
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditions is a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces.
我们发现,由凝溶胶蛋白缩短至生理长度并与重组人细丝蛋白(FLNs)交联的肌动蛋白丝,表现出与活细胞中所报道的类似的动态弹性特性。为了获得与细胞相当的弹性值,体外网络必须承受外部预应力,该预应力直接控制网络弹性。在生理条件下,应变相关行为的分子要求是在FLNa和一些FLNb分子中发现的柔性铰链。体外细丝蛋白-F-肌动蛋白网络的基本物理特性复制了活细胞的基本力学特性。这种物理行为可以在低应变下适应被动变形和内部细胞器运输,但能抵抗外部或内部产生的高剪切力。