Oerlemans Ruud, van der Heijden Joost, Vink Josefien, Dijkmans Ben A C, Kaspers Gertjan J L, Lems Willem F, Scheffer George L, Ifergan Ilan, Scheper Rik J, Cloos Jacqueline, Assaraf Yehuda G, Jansen Gerrit
VU University Medical Center, Amsterdam, The Netherlands.
Arthritis Rheum. 2006 Feb;54(2):557-68. doi: 10.1002/art.21569.
To explore the onset and molecular mechanism of resistance to the antimalarial disease-modifying antirheumatic drug (DMARD) chloroquine (CQ) in human CEM T cells.
Human CEM cells were used as an in vitro model system to study the development of CQ resistance by growing cells in stepwise increasing concentrations of CQ.
Over a period of 6 months, CEM cell lines developed 4-5-fold resistance to CQ. CQ resistance was associated with the specific overexpression of multidrug resistance-associated protein 1 (MRP-1), an ATP-driven drug efflux pump. This was illustrated by 1) overexpression of MRP-1 by Western blotting and 2) the complete reversal of CQ resistance by the MRP-1 transport inhibitors MK571 and probenecid. Importantly, CQ-resistant CEM cells retained full sensitivity to other DMARDs, including methotrexate, leflunomide, cyclosporin A, and sulfasalazine, but exhibited a high level of cross-resistance (>1,000-fold) to the glucocorticoid dexamethasone. The mechanistic basis for the latter was associated with aberrant signaling via the cAMP-protein kinase A pathway, since the cAMP-inducing agent forskolin reversed dexamethasone resistance. Finally, CQ-resistant CEM cells displayed a markedly reduced capacity to release proinflammatory cytokines (tumor necrosis factor alpha) and chemokines (interleukin-8).
Induction of overexpression of the multidrug resistance efflux transporter MRP-1 can emerge after long-term exposure to CQ and results in CQ resistance and collateral resistance to dexamethasone. These findings warrant further detailed investigations into the possible role of MRP-1 and other members of the superfamily of drug efflux pumps in diminishing the efficacy of DMARDs in rheumatoid arthritis treatment.
探讨人类CEM T细胞对抗疟疾病修饰抗风湿药物(DMARD)氯喹(CQ)产生耐药性的起始及分子机制。
将人类CEM细胞用作体外模型系统,通过在逐步增加浓度的CQ中培养细胞来研究CQ耐药性的发展。
在6个月的时间里,CEM细胞系对CQ产生了4至5倍的耐药性。CQ耐药性与多药耐药相关蛋白1(MRP - 1,一种ATP驱动的药物外排泵)的特异性过表达有关。这通过以下两点得以证明:1)通过蛋白质印迹法检测到MRP - 1过表达;2)MRP - 1转运抑制剂MK571和丙磺舒可完全逆转CQ耐药性。重要的是,对CQ耐药的CEM细胞对其他DMARDs,包括甲氨蝶呤、来氟米特、环孢素A和柳氮磺胺吡啶仍保持完全敏感性,但对糖皮质激素地塞米松表现出高水平的交叉耐药性(>1000倍)。后者的机制基础与通过cAMP - 蛋白激酶A途径的异常信号传导有关,因为cAMP诱导剂福斯可林可逆转地塞米松耐药性。最后,对CQ耐药的CEM细胞释放促炎细胞因子(肿瘤坏死因子α)和趋化因子(白细胞介素 - 8)的能力明显降低。
长期暴露于CQ后可诱导多药耐药外排转运蛋白MRP - 1过表达,导致CQ耐药性以及对地塞米松的 collateral 耐药性。这些发现值得进一步详细研究MRP - 1和药物外排泵超家族的其他成员在降低DMARDs在类风湿性关节炎治疗中的疗效方面可能发挥的作用。