Porter Melissa A, Hall Jordan R, Locke James C, Jensen Jan H, Molina Pablo A
Department of Chemistry, Murray State University, Murray, Kentucky 4 2071, USA.
Proteins. 2006 May 15;63(3):621-35. doi: 10.1002/prot.20879.
Experimentally determined mean pK(a) values of carboxyl residues located at the N-termini of alpha-helices are lower than their overall mean values. Here, we perform three types of analyses to account for this phenomenon. We estimate the magnitude of the helix macrodipole to determine its potential role in lowering carboxyl pK(a) values at the N-termini. No correlation between the magnitude of the macrodipole and the pK(a) values is observed. Using the pK(a) program propKa we compare the molecular surroundings of 18 N-termini carboxyl residues versus 233 protein carboxyl groups from a previously studied database. Although pK(a) lowering interactions at the N-termini are similar in nature to those encountered in other protein regions, pK(a) lowering backbone and side-chain hydrogen bonds appear in greater number at the N-termini. For both Asp and Glu, there are about 0.5 more hydrogen bonds per residue at the N-termini than in other protein regions, which can be used to explain their lower than average pK(a) values. Using a QM-based pK(a) prediction model, we investigate the chemical environment of the two lowest Asp and the two lowest Glu pK(a) values at the N-termini so as to quantify the effect of various pK(a) determinants. We show that local interactions suffice to account for the acidity of carboxyl residues at the N-termini. The effect of the helix dipole on carboxyl pK(a) values, if any, is marginal. Backbone amide hydrogen bonds constitute the single biggest contributor to the lowest carboxyl pK(a) values at the N-termini. Their estimated pK(a) lowering effects range from about 1.0 to 1.9 pK(a) units.
实验测定的位于α螺旋N端的羧基残基的平均pK(a)值低于其总体平均值。在此,我们进行了三种类型的分析来解释这一现象。我们估计螺旋大偶极的大小,以确定其在降低N端羧基pK(a)值方面的潜在作用。未观察到大偶极大小与pK(a)值之间的相关性。使用pK(a)程序propKa,我们比较了18个N端羧基残基与先前研究数据库中233个蛋白质羧基的分子环境。尽管N端的pK(a)降低相互作用在性质上与其他蛋白质区域遇到的相互作用相似,但N端出现的pK(a)降低主链和侧链氢键数量更多。对于天冬氨酸和谷氨酸,N端每个残基的氢键比其他蛋白质区域大约多0.5个,这可以用来解释它们低于平均水平的pK(a)值。使用基于量子力学的pK(a)预测模型,我们研究了N端两个最低pK(a)值的天冬氨酸和两个最低pK(a)值的谷氨酸的化学环境,以量化各种pK(a)决定因素的影响。我们表明,局部相互作用足以解释N端羧基残基的酸度。螺旋偶极对羧基pK(a)值的影响(如果有的话)是微不足道的。主链酰胺氢键是N端最低羧基pK(a)值的最大单一贡献者。它们估计的pK(a)降低效应范围约为1.0至1.9个pK(a)单位。