Suppr超能文献

估计和改善蛋白质相互作用错误率。

Estimating and improving protein interaction error rates.

作者信息

D'haeseleer Patrik, Church George M

机构信息

Lipper Center for Computational Genetics, Harvard Medical School, USA.

出版信息

Proc IEEE Comput Syst Bioinform Conf. 2004:216-23. doi: 10.1109/csb.2004.1332435.

Abstract

High throughput protein interaction data sets have proven to be notoriously noisy. Although it is possible to focus on interactions with higher reliability by using only those that are backed up by two or more lines of evidence, this approach invariably throws out the majority of available data. A more optimal use could be achieved by incorporating the probabilities associated with all available interactions into the analysis. We present a novel method for estimating error rates associated with specific protein interaction data sets, as well as with individual interactions given the data sets in which they appear. As a bonus, we also get an estimate for the total number of protein interactions in yeast. Certain types of false positive results can be identified and removed, resulting in a significant improvement in quality of the data set. For co-purification data sets, we show how we can reach a tradeoff between the "spoke" and "matrix" representation of interactions within co-purified groups of proteins to achieve an optimal false positive error rate.

摘要

高通量蛋白质相互作用数据集已被证明存在大量噪声。虽然通过仅使用有两条或更多证据支持的相互作用来专注于可靠性更高的相互作用是可能的,但这种方法总是会舍弃大部分可用数据。通过将与所有可用相互作用相关的概率纳入分析,可以实现更优化的利用。我们提出了一种新颖的方法,用于估计与特定蛋白质相互作用数据集相关的错误率,以及给定其出现的数据集时单个相互作用的错误率。此外,我们还能估计酵母中蛋白质相互作用的总数。某些类型的假阳性结果可以被识别并去除,从而显著提高数据集的质量。对于共纯化数据集,我们展示了如何在共纯化蛋白质组内相互作用的“辐条”和“矩阵”表示之间进行权衡,以实现最佳的假阳性错误率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验