Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
1] Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. [2] Centro Riferimento Oncologico, Istituto Nazionale Tumori, Aviano, Italy.
Nat Methods. 2015 Jan;12(1):79-84. doi: 10.1038/nmeth.3178. Epub 2014 Nov 17.
Protein-protein interactions (PPIs) are useful for understanding signaling cascades, predicting protein function, associating proteins with disease and fathoming drug mechanism of action. Currently, only ∼ 10% of human PPIs may be known, and about one-third of human proteins have no known interactions. We introduce FpClass, a data mining-based method for proteome-wide PPI prediction. At an estimated false discovery rate of 60%, we predicted 250,498 PPIs among 10,531 human proteins; 10,647 PPIs involved 1,089 proteins without known interactions. We experimentally tested 233 high- and medium-confidence predictions and validated 137 interactions, including seven novel putative interactors of the tumor suppressor p53. Compared to previous PPI prediction methods, FpClass achieved better agreement with experimentally detected PPIs. We provide an online database of annotated PPI predictions (http://ophid.utoronto.ca/fpclass/) and the prediction software (http://www.cs.utoronto.ca/~juris/data/fpclass/).
蛋白质-蛋白质相互作用(PPIs)对于理解信号级联、预测蛋白质功能、将蛋白质与疾病相关联以及阐明药物作用机制非常有用。目前,人类 PPIs 中可能只有约 10%是已知的,大约三分之一的人类蛋白质没有已知的相互作用。我们引入了 FpClass,这是一种基于数据挖掘的蛋白质组范围内 PPI 预测方法。在估计的假发现率为 60%的情况下,我们预测了 10531 个人类蛋白质中的 250498 个 PPI;10647 个 PPI 涉及 1089 个没有已知相互作用的蛋白质。我们实验测试了 233 个高可信度和中可信度预测,并验证了 137 个相互作用,包括肿瘤抑制因子 p53 的七个新的假定相互作用因子。与以前的 PPI 预测方法相比,FpClass 与实验检测到的 PPI 具有更好的一致性。我们提供了一个注释 PPI 预测的在线数据库(http://ophid.utoronto.ca/fpclass/)和预测软件(http://www.cs.utoronto.ca/~juris/data/fpclass/)。