Foucher Yohann, Mathieu Eve, Saint-Pierre Philippe, Durand Jean-François, Daurès Jean-Pierre
Institut Universitaire de Recherche Clinique, Laboratoire de Biostatistique - 641, avenue du Doyen Gaston Giraud, 34093 Montpellier, France.
Biom J. 2005 Dec;47(6):825-33. doi: 10.1002/bimj.200410170.
Multi-state stochastic models are useful tools for studying complex dynamics such as chronic diseases. Semi-Markov models explicitly define distributions of waiting times, giving an extension of continuous time and homogeneous Markov models based implicitly on exponential distributions. This paper develops a parametric model adapted to complex medical processes. (i) We introduced a hazard function of waiting times with a U or inverse U shape. (ii) These distributions were specifically selected for each transition. (iii) The vector of covariates was also selected for each transition. We applied this method to the evolution of HIV infected patients. We used a sample of 1244 patients followed up at the hospital in Nice, France.
多状态随机模型是研究诸如慢性病等复杂动态过程的有用工具。半马尔可夫模型明确地定义了等待时间的分布,它是基于指数分布隐含定义的连续时间齐次马尔可夫模型的一种扩展。本文开发了一种适用于复杂医疗过程的参数模型。(i)我们引入了具有U形或倒U形的等待时间风险函数。(ii)针对每个转移专门选择了这些分布。(iii)针对每个转移也选择了协变量向量。我们将此方法应用于HIV感染患者的病情发展。我们使用了法国尼斯一家医院随访的1244名患者的样本。