Suppr超能文献

多元因子降维分析与基于家系的关联检验在识别不一致同胞对研究中的易感基因座。

Multifactor-dimensionality reduction versus family-based association tests in detecting susceptibility loci in discordant sib-pair studies.

机构信息

Genetics Program, Department of Medicine, School of Medicine, Boston University, Boston, MA, USA.

出版信息

BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S146. doi: 10.1186/1471-2156-6-S1-S146.

Abstract

Complex diseases are generally thought to be under the influence of multiple, and possibly interacting, genes. Many association methods have been developed to identify susceptibility genes assuming a single-gene disease model, referred to as single-locus methods. Multilocus methods consider joint effects of multiple genes and environmental factors. One commonly used method for family-based association analysis is implemented in FBAT. The multifactor-dimensionality reduction method (MDR) is a multilocus method, which identifies multiple genetic loci associated with the occurrence of complex disease. Many studies of late onset complex diseases employ a discordant sib pairs design. We compared the FBAT and MDR in their ability to detect susceptibility loci using a discordant sib-pair dataset generated from the simulated data made available to participants in the Genetic Analysis Workshop 14. Using FBAT, we were able to identify the effect of one susceptibility locus. However, the finding was not statistically significant. We were not able to detect any of the interactions using this method. This is probably because the FBAT test is designed to find loci with major effects, not interactions. Using MDR, the best result we obtained identified two interactions. However, neither of these reached a level of statistical significance. This is mainly due to the heterogeneity of the disease trait and noise in the data.

摘要

复杂疾病通常被认为是受多个,甚至可能相互作用的基因影响。已经开发出许多关联方法来识别易感基因,假设单基因疾病模型,称为单基因座方法。多基因座方法考虑多个基因和环境因素的联合效应。一种常用的基于家族的关联分析方法是在 FBAT 中实现的。多因子降维方法(MDR)是一种多基因座方法,它可以识别与复杂疾病发生相关的多个遗传基因座。最近许多迟发性复杂疾病的研究都采用了不一致的同胞对设计。我们比较了 FBAT 和 MDR 在使用来自遗传分析研讨会 14 参与者提供的模拟数据生成的不一致同胞对数据集检测易感基因座方面的能力。使用 FBAT,我们能够确定一个易感基因座的影响。然而,该发现没有统计学意义。我们无法使用这种方法检测到任何相互作用。这可能是因为 FBAT 测试旨在找到具有主要效应的基因座,而不是相互作用。使用 MDR,我们得到的最佳结果确定了两个相互作用。然而,这些都没有达到统计学意义。这主要是由于疾病特征的异质性和数据中的噪声。

相似文献

3
A novel method to identify gene-gene effects in nuclear families: the MDR-PDT.
Genet Epidemiol. 2006 Feb;30(2):111-23. doi: 10.1002/gepi.20128.
5
Detection of susceptibility loci by genome-wide linkage analysis.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S18. doi: 10.1186/1471-2156-6-S1-S18.
7
Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.
Epilepsia. 2012 Feb;53(2):308-18. doi: 10.1111/j.1528-1167.2011.03379.x. Epub 2012 Jan 13.
8
Statistical multilocus methods for disequilibrium analysis in complex traits.
Hum Mutat. 2001 Apr;17(4):285-8. doi: 10.1002/humu.25.
9
Detecting susceptibility genes in case-control studies using set association.
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2156-4-S1-S9.

引用本文的文献

1
The Fangshan/Family-based Ischemic Stroke Study In China (FISSIC) protocol.
BMC Med Genet. 2007 Sep 10;8:60. doi: 10.1186/1471-2350-8-60.

本文引用的文献

1
Mathematical multi-locus approaches to localizing complex human trait genes.
Nat Rev Genet. 2003 Sep;4(9):701-9. doi: 10.1038/nrg1155.
2
Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions.
Bioinformatics. 2003 Feb 12;19(3):376-82. doi: 10.1093/bioinformatics/btf869.
4
New strategies for identifying gene-gene interactions in hypertension.
Ann Med. 2002;34(2):88-95. doi: 10.1080/07853890252953473.
5
Trimming, weighting, and grouping SNPs in human case-control association studies.
Genome Res. 2001 Dec;11(12):2115-9. doi: 10.1101/gr.204001.
9
Allele-sharing models: LOD scores and accurate linkage tests.
Am J Hum Genet. 1997 Nov;61(5):1179-88. doi: 10.1086/301592.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验