Genetics Program, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S15. doi: 10.1186/1471-2156-6-S1-S15.
Alcohol dependence is a serious public health problem. We studied data from families participating in the Collaborative Study on the Genetics of Alcoholism (COGA) and made available to participants in the Genetic Analysis Workshop 14 (GAW14) in order to search for genes predisposing to alcohol dependence. Using factor analysis, we identified four factors (F1, F2, F3, F4) related to the electroencephalogram traits. We conducted variance components linkage analysis with each of the factors. Our results using the Affymetrix single-nucleotide polymorphism dataset showed significant evidence for a novel linkage of F3 (factor comprised of the three midline channel EEG measures from the target case of the Visual Oddball experiment ttdt2, 3, 4) to chromosome 18 (LOD = 3.45). This finding was confirmed by analyses of the microsatellite data (LOD = 2.73) and Illumina SNP data (LOD = 3.30). We also demonstrated that, in a sample like the COGA data, a dense single-nucleotide polymorphism map provides better linkage signals than low-resolution microsatellite map with quantitative traits.
酒精依赖是一个严重的公共卫生问题。我们研究了参与酒精依赖遗传学合作研究(COGA)的家庭的数据,并将其提供给遗传分析研讨会 14(GAW14)的参与者,以便寻找导致酒精依赖的基因。使用因子分析,我们确定了与脑电图特征相关的四个因子(F1、F2、F3、F4)。我们对每个因子进行了方差成分连锁分析。我们使用 Affymetrix 单核苷酸多态性数据集的结果显示,F3(由视觉Oddball 实验 ttdt2、3、4 的中线通道 EEG 测量组成的因子)与 18 号染色体(LOD = 3.45)之间存在新的连锁的显著证据。这一发现通过微卫星数据(LOD = 2.73)和 Illumina SNP 数据(LOD = 3.30)的分析得到了证实。我们还表明,在像 COGA 数据这样的样本中,密集的单核苷酸多态性图谱比具有定量特征的低分辨率微卫星图谱提供更好的连锁信号。