Pesce Céline, Jacobs Jonathan M, Berthelot Edwige, Perret Marion, Vancheva Taca, Bragard Claude, Koebnik Ralf
UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France.
Applied Microbiology Phytopathology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium.
Front Microbiol. 2017 Jun 26;8:1177. doi: 10.3389/fmicb.2017.01177. eCollection 2017.
is the causal agent of bacterial leaf streak, the most common bacterial disease of wheat and barley. To cause disease, most xanthomonads depend on a highly conserved type III secretion system, which translocates type III effectors into host plant cells. Mutagenesis of the conserved type III secretion gene confirmed that the type III secretion system is required to cause disease on the host plant barley and to trigger a non-host hypersensitive response (HR) in pepper leaves. Type III effectors are delivered to the host cell by a surface appendage, the Hrp pilus, and a translocon protein complex that inserts into the plant cell plasma membrane. Homologs of the HrpF protein, including PopF from and NolX from rhizobia, are thought to act as a translocon protein. Comparative genomics revealed that strains harbor a noncanonical gene cluster, which rather shares features with type III secretion systems from , , , and than other spp. Surprisingly, none of these bacteria, except , encode a homolog of the HrpF translocon. Here, we aimed at identifying a candidate translocon from . Notably, genomes from strains that lacked // instead encode another gene, called , adjacent to and co-regulated with the type III secretion system gene cluster. An insertional mutant in the gene, which is the first gene of a two-gene operon, -, was non-pathogenic on barley and did not cause the HR or programmed cell death in non-host pepper similar to the mutant. The mutant phenotypes were partially complemented by either or the downstream gene, , which has been described as a facilitator of translocation in . Interestingly, the mutant was also complemented by the gene from . These findings reveal that both HpaT and HpaH contribute to the injection of type III effectors into plant cells.
是细菌性条斑病的病原体,细菌性条斑病是小麦和大麦最常见的细菌病害。为了引发疾病,大多数黄单胞菌依赖于高度保守的III型分泌系统,该系统将III型效应子转运到宿主植物细胞中。保守的III型分泌基因的诱变证实,III型分泌系统是在宿主植物大麦上引发疾病以及在辣椒叶片中触发非宿主过敏反应(HR)所必需的。III型效应子通过表面附属物Hrp菌毛和插入植物细胞质膜的转位子蛋白复合物传递到宿主细胞中。HrpF蛋白的同源物,包括来自[具体物种1]的PopF和来自根瘤菌的NolX,被认为起着转位子蛋白的作用。比较基因组学研究表明,[目标菌株]菌株含有一个非典型的[基因簇名称]基因簇,该基因簇与来自[其他物种1]、[其他物种2]、[其他物种3]和[其他物种4]的III型分泌系统具有更多共同特征,而非其他[目标菌株所属物种]物种。令人惊讶的是,除了[特定细菌]外,这些细菌中没有一个编码HrpF转位子的同源物。在这里,我们旨在从[目标菌株]中鉴定出一个候选转位子。值得注意的是,缺乏[特定基因名称1]//的[目标菌株]菌株的基因组反而编码了另一个基因,称为[特定基因名称2],它与III型分泌系统基因簇相邻并受其共同调控。[特定基因名称2]基因是一个双基因操纵子的第一个基因,即[操纵子名称] - [特定基因名称2],其插入突变体在大麦上无致病性,并且在非宿主辣椒中不会引发HR或程序性细胞死亡,这与[特定基因名称1]突变体类似。[特定基因名称2]突变体的表型部分地由[特定基因名称3]或下游基因[特定基因名称4]互补,[特定基因名称4]在[相关研究物种]中被描述为转运促进因子。有趣的是,[特定基因名称2]突变体也由来自[特定物种]的[特定基因名称5]基因互补化。这些发现表明,HpaT和HpaH都有助于将III型效应子注入植物细胞。