Yakushi Toshiharu, Yang Junghoon, Fukuoka Hajime, Homma Michio, Blair David F
Graduate School of Biological Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
J Bacteriol. 2006 Feb;188(4):1466-72. doi: 10.1128/JB.188.4.1466-1472.2006.
In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY.
在大肠杆菌中,鞭毛马达的旋转已被证明取决于定子蛋白MotA的带电残基与转子蛋白FliG之间的静电相互作用。这些带电残基在溶藻弧菌的Na⁺驱动的极鞭毛中是保守的,但在溶藻弧菌中的突变研究表明,它们对马达旋转相对不重要。因此,在大肠杆菌中检测到的静电相互作用可能不是鞭毛马达的普遍特征,或者,溶藻弧菌马达可能依赖于类似的相互作用,但包含使其对突变更具抗性的其他特征。在这里,我们对嵌合马达进行了比较研究,这些嵌合马达存在于大肠杆菌中,但经过改造以使用溶藻弧菌的定子组件、转子组件或两者。当溶藻弧菌的转子和定子蛋白在大肠杆菌马达的环境中发挥作用时,发现其中的带电残基对马达旋转至关重要。转子/定子双突变体中的协同和抑制模式表明,溶藻弧菌的蛋白与大肠杆菌中的对应蛋白的相互作用方式基本相同。溶藻弧菌中转子-定子界面的稳健性部分归因于PomA中存在额外的带电残基,但主要似乎归因于其他因素,因为使用溶藻弧菌的转子和定子组件的大肠杆菌马达仍然对突变敏感。溶藻弧菌中的马达功能可能会因MotX和MotY蛋白而增强。