Suppr超能文献

转子和定子的带电残基在鞭毛旋转中的作用:利用大肠杆菌中H⁺驱动和Na⁺驱动的马达进行的比较研究。

Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli.

作者信息

Yakushi Toshiharu, Yang Junghoon, Fukuoka Hajime, Homma Michio, Blair David F

机构信息

Graduate School of Biological Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.

出版信息

J Bacteriol. 2006 Feb;188(4):1466-72. doi: 10.1128/JB.188.4.1466-1472.2006.

Abstract

In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY.

摘要

在大肠杆菌中,鞭毛马达的旋转已被证明取决于定子蛋白MotA的带电残基与转子蛋白FliG之间的静电相互作用。这些带电残基在溶藻弧菌的Na⁺驱动的极鞭毛中是保守的,但在溶藻弧菌中的突变研究表明,它们对马达旋转相对不重要。因此,在大肠杆菌中检测到的静电相互作用可能不是鞭毛马达的普遍特征,或者,溶藻弧菌马达可能依赖于类似的相互作用,但包含使其对突变更具抗性的其他特征。在这里,我们对嵌合马达进行了比较研究,这些嵌合马达存在于大肠杆菌中,但经过改造以使用溶藻弧菌的定子组件、转子组件或两者。当溶藻弧菌的转子和定子蛋白在大肠杆菌马达的环境中发挥作用时,发现其中的带电残基对马达旋转至关重要。转子/定子双突变体中的协同和抑制模式表明,溶藻弧菌的蛋白与大肠杆菌中的对应蛋白的相互作用方式基本相同。溶藻弧菌中转子-定子界面的稳健性部分归因于PomA中存在额外的带电残基,但主要似乎归因于其他因素,因为使用溶藻弧菌的转子和定子组件的大肠杆菌马达仍然对突变敏感。溶藻弧菌中的马达功能可能会因MotX和MotY蛋白而增强。

相似文献

2
Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.
J Bacteriol. 2008 May;190(10):3565-71. doi: 10.1128/JB.00849-07. Epub 2008 Mar 7.
4
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.
6
Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
Genes Cells. 2011 Oct;16(10):985-99. doi: 10.1111/j.1365-2443.2011.01545.x. Epub 2011 Sep 5.
8
Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
J Mol Biol. 2008 Mar 7;376(5):1251-9. doi: 10.1016/j.jmb.2007.12.023. Epub 2007 Dec 15.
9
Electrostatic interactions between rotor and stator in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436-41. doi: 10.1073/pnas.95.11.6436.
10

引用本文的文献

1
Sodium-Dependent Conformational Change in Flagellar Stator Protein MotS from .
Biomolecules. 2025 Feb 18;15(2):302. doi: 10.3390/biom15020302.
3
Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415713122. doi: 10.1073/pnas.2415713122. Epub 2024 Dec 30.
4
Ring formation by fusion protein composed of FliF and FliG, MS-ring and C-ring component of bacterial flagellar motor in membrane.
Biophys Physicobiol. 2023 Jun 9;20(2):e200028. doi: 10.2142/biophysico.bppb-v20.0028. eCollection 2023.
5
Changes in the hydrophobic network of the FliG domain induce rotational switching of the flagellar motor.
iScience. 2023 Jul 11;26(8):107320. doi: 10.1016/j.isci.2023.107320. eCollection 2023 Aug 18.
6
Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo.
Methods Mol Biol. 2023;2646:71-82. doi: 10.1007/978-1-0716-3060-0_7.
8
The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation.
Front Microbiol. 2022 Apr 27;13:869187. doi: 10.3389/fmicb.2022.869187. eCollection 2022.
10

本文引用的文献

1
Direct observation of steps in rotation of the bacterial flagellar motor.
Nature. 2005 Oct 6;437(7060):916-9. doi: 10.1038/nature04003.
2
Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum.
J Biol Chem. 2005 Jul 8;280(27):25659-64. doi: 10.1074/jbc.M500263200. Epub 2005 May 2.
3
Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti.
Mol Microbiol. 2005 May;56(3):708-18. doi: 10.1111/j.1365-2958.2005.04565.x.
4
Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa.
J Bacteriol. 2005 Jan;187(2):771-7. doi: 10.1128/JB.187.2.771-777.2005.
6
The complex flagellar torque generator of Pseudomonas aeruginosa.
J Bacteriol. 2004 Oct;186(19):6341-50. doi: 10.1128/JB.186.19.6341-6350.2004.
8
Solubilization and purification of the MotA/MotB complex of Escherichia coli.
Biochemistry. 2004 Jan 13;43(1):26-34. doi: 10.1021/bi035405l.
10
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验