Nishikino Tatsuro, Takekawa Norihiro, Kishikawa Jun-Ichi, Hirose Mika, Kojima Seiji, Homma Michio, Kato Takayuki, Imada Katsumi
Division of Protein Structural Biology, Institute for Protein Research, Osaka University, Suita 565-0871, Japan.
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415713122. doi: 10.1073/pnas.2415713122. Epub 2024 Dec 30.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure. Here, we determined the structures of the sodium-driven stator of , namely PomAB, in the presence and absence of sodium ions and the structure with its specific inhibitor, phenamil, by cryo-electron microscopy. The structures and following functional analysis revealed the sodium ion pathway, the mechanism of ion selectivity, and the inhibition mechanism by phenamil. We propose a model of sodium ion flow coupled with the stator rotation based on the structures. This work provides insights into the molecular mechanisms of ion specificity and conversion of the electrochemical potential into mechanical functions.
许多细菌利用由特定离子流驱动的马达旋转的鞭毛在液体中游泳或在表面群体游动。该马达由转子和定子组成,定子将离子流的能量转化为机械旋转。然而,离子通道以及定子旋转与特定离子流耦合的机制仍不清楚。在这里,我们通过冷冻电子显微镜确定了嗜盐栖热袍菌(Thermotoga maritima)的钠驱动定子(即PomAB)在有和没有钠离子存在时的结构,以及其与特异性抑制剂非那明(phenamil)结合时的结构。这些结构以及后续的功能分析揭示了钠离子通道、离子选择性机制以及非那明的抑制机制。我们基于这些结构提出了一个钠离子流与定子旋转耦合的模型。这项工作为离子特异性以及将电化学势转化为机械功能的分子机制提供了见解。