Suppr超能文献

定点交联确定了混合细菌鞭毛马达中定子-转子的相互作用表面。

Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor.

作者信息

Terashima Hiroyuki, Kojima Seiji, Homma Michio

机构信息

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.

出版信息

J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00016-21. Epub 2021 Feb 22.

Abstract

The bacterial flagellum is the motility organelle powered by a rotary motor. The rotor and stator elements of the motor are located in the cytoplasmic membrane and cytoplasm. The stator units assemble around the rotor, and an ion flux (typically H or Na) conducted through a channel of the stator induces conformational changes that generate rotor torque. Electrostatic interactions between the stator protein PomA in (MotA in ) and the rotor protein FliG have been shown by genetic analyses, but have not been demonstrated biochemically. Here, we used site-directed photo- and disulfide-crosslinking to provide direct evidence for the interaction. We introduced a UV-reactive amino acid, -benzoyl-L-phenylalanine (BPA), into the cytoplasmic region of PomA or the C-terminal region of FliG in intact cells. After UV irradiation, BPA inserted at a number of positions in PomA formed a crosslink with FliG. PomA residue K89 gave the highest yield of crosslinks, suggesting that it is the PomA residue nearest to FliG. UV-induced crosslinking stopped motor rotation, and the isolated hook-basal body contained the crosslinked products. BPA inserted to replace residues R281 or D288 in FliG formed crosslinks with the stator protein, MotA. A cysteine residue introduced in place of PomA K89 formed disulfide crosslinks with cysteine inserted in place of FliG residues R281 and D288, and some other flanking positions. These results provide the first demonstration of direct physical interaction between specific residues in FliG and PomA/MotA.The bacterial flagellum is a unique organelle that functions as a rotary motor. The interaction between the stator and rotor is indispensable for stator assembly into the motor and the generation of motor torque. However, the interface of the stator-rotor interaction has only been defined by mutational analysis. Here, we detected the stator-rotor interaction using site-directed photo- and disulfide-crosslinking approaches. We identified several residues in the PomA stator, especially K89, that are in close proximity to the rotor. Moreover, we identified several pairs of stator and rotor residues that interact. This study directly demonstrates the nature of the stator-rotor interaction and suggests how stator units assemble around the rotor and generate torque in the bacterial flagellar motor.

摘要

细菌鞭毛是由旋转马达驱动的运动细胞器。马达的转子和定子元件位于细胞质膜和细胞质中。定子单元围绕转子组装,通过定子通道传导的离子流(通常是H或Na)会引起构象变化,从而产生转子扭矩。基因分析表明了定子蛋白PomA(大肠杆菌中为MotA)与转子蛋白FliG之间的静电相互作用,但尚未得到生化验证。在此,我们使用定点光交联和二硫键交联来为这种相互作用提供直接证据。我们在完整细胞中将一种对紫外线有反应的氨基酸——对苯甲酰-L-苯丙氨酸(BPA)引入PomA的细胞质区域或FliG的C末端区域。紫外线照射后,插入PomA多个位置的BPA与FliG形成了交联。PomA残基K89的交联产率最高,这表明它是最靠近FliG的PomA残基。紫外线诱导的交联使马达停止转动,分离出的钩形基体包含交联产物。插入以取代FliG中残基R281或D288的BPA与定子蛋白MotA形成了交联。引入取代PomA K89的半胱氨酸残基与取代FliG残基R281和D288以及其他一些侧翼位置插入的半胱氨酸形成了二硫键交联。这些结果首次证明了FliG与PomA/MotA中特定残基之间的直接物理相互作用。细菌鞭毛是一种独特的细胞器,起着旋转马达的作用。定子和转子之间的相互作用对于定子组装到马达中以及产生马达扭矩是必不可少的。然而,定子 - 转子相互作用的界面仅通过突变分析来确定。在此,我们使用定点光交联和二硫键交联方法检测定子 - 转子相互作用。我们在PomA定子中鉴定出几个残基,尤其是K89,它们与转子距离很近。此外,我们鉴定出了几对相互作用的定子和转子残基。这项研究直接证明了定子 - 转子相互作用的性质,并揭示了定子单元如何围绕转子组装以及在细菌鞭毛马达中产生扭矩。

相似文献

1
2
Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo.
Methods Mol Biol. 2023;2646:71-82. doi: 10.1007/978-1-0716-3060-0_7.
4
5
Putative Spanner Function of the PomB Plug Region in the Stator Rotation Model for Flagellar Motor.
J Bacteriol. 2021 Jul 22;203(16):e0015921. doi: 10.1128/JB.00159-21.
7
Electrostatic interactions between rotor and stator in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436-41. doi: 10.1073/pnas.95.11.6436.

引用本文的文献

1
Cryo-EM Structure of the Flagellar Motor Complex from sp. TCA20.
Biomolecules. 2025 Mar 18;15(3):435. doi: 10.3390/biom15030435.
2
Torque-speed relationship of the flagellar motor with dual-stator systems in .
mBio. 2024 Dec 11;15(12):e0074524. doi: 10.1128/mbio.00745-24. Epub 2024 Oct 30.
3
Structural basis of the bacterial flagellar motor rotational switching.
Cell Res. 2024 Nov;34(11):788-801. doi: 10.1038/s41422-024-01017-z. Epub 2024 Aug 23.
5
Ring formation by fusion protein composed of FliF and FliG, MS-ring and C-ring component of bacterial flagellar motor in membrane.
Biophys Physicobiol. 2023 Jun 9;20(2):e200028. doi: 10.2142/biophysico.bppb-v20.0028. eCollection 2023.
6
Changes in the hydrophobic network of the FliG domain induce rotational switching of the flagellar motor.
iScience. 2023 Jul 11;26(8):107320. doi: 10.1016/j.isci.2023.107320. eCollection 2023 Aug 18.
7
Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit.
Nat Commun. 2023 Jul 27;14(1):4411. doi: 10.1038/s41467-023-39899-z.
9
The Bacterial Flagellar Motor: Insights Into Torque Generation, Rotational Switching, and Mechanosensing.
Front Microbiol. 2022 May 30;13:911114. doi: 10.3389/fmicb.2022.911114. eCollection 2022.
10
The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation.
Front Microbiol. 2022 Apr 27;13:869187. doi: 10.3389/fmicb.2022.869187. eCollection 2022.

本文引用的文献

1
Structure and Function of Stator Units of the Bacterial Flagellar Motor.
Cell. 2020 Oct 1;183(1):244-257.e16. doi: 10.1016/j.cell.2020.08.016. Epub 2020 Sep 14.
2
Structures of the stator complex that drives rotation of the bacterial flagellum.
Nat Microbiol. 2020 Dec;5(12):1553-1564. doi: 10.1038/s41564-020-0788-8. Epub 2020 Sep 14.
3
Molecular mechanism for rotational switching of the bacterial flagellar motor.
Nat Struct Mol Biol. 2020 Nov;27(11):1041-1047. doi: 10.1038/s41594-020-0497-2. Epub 2020 Sep 7.
4
Structure and Energy-Conversion Mechanism of the Bacterial Na-Driven Flagellar Motor.
Trends Microbiol. 2020 Sep;28(9):719-731. doi: 10.1016/j.tim.2020.03.010. Epub 2020 Apr 23.
5
Structure and Stoichiometry of the Ton Molecular Motor.
Int J Mol Sci. 2020 Jan 7;21(2):375. doi: 10.3390/ijms21020375.
7
Cryo-EM studies of the rotary H-ATPase/synthase from .
Biophys Physicobiol. 2019 Sep 3;16:140-146. doi: 10.2142/biophysico.16.0_140. eCollection 2019.
8
Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry.
Commun Biol. 2019 Oct 4;2:358. doi: 10.1038/s42003-019-0604-2. eCollection 2019.
9
Essential ion binding residues for Na flow in stator complex of the Vibrio flagellar motor.
Sci Rep. 2019 Aug 2;9(1):11216. doi: 10.1038/s41598-019-46038-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验